

Comune di Trani

Regione Puglia

OPERE DI MESSA IN SICUREZZA DEI LOTTI I, II, III DISCARICA PER RSU SITA IN TRANI E DENOMINATA "PURO VECCHIO"

CIG: 7060424E30

PROGETTO ESECUTIVO

ALLEGATO	R - ELABO	RATI DESCRITTIVI	SCALA:
R.4	RELAZION	E CALCOLI IDRAULICI	
N,T			DATA: Aprile 2018
AGGIORNAMENTO	DATA	DESCRIZIONE	

INDICE

1	PI	REME	SSA	2
2	S	TUDI	O IDROLOGICO	4
	2.1	IN	DAGINE SUL REGIME DELLE PIOGGE	4
	2.2		DEFFICIENTI DI AFFLUSSO	
	2.3		ELTA DELLA FREQUENZA DELLE PIOGGE CRITICHE	
3			DI DRENAGGIO	
3				
	3.1		DNFIGURAZIONE INTERVENTI DI REGIMAZIONE	
	3.2		MENSIONAMENTO DELLA RETE	
	_	2.2.1	Calcoli idraulici per la rete a pelo libero	
	3	2.2.2	Calcoli idraulici per le aree sottoposte al piano campagna	
		3.2.2		
	3.3		ATTAMENTO E SMALTIMENTO ACQUE	
		.3.1	Trattamento delle acque meteoriche	
	_	.3.1	Dimensionamento del sistema di smaltimento negli strati superficiali del	21
	J	.3.2	suolo	22
	3	.3.3	Verifica del sistema di smaltimento	
	3	.3.4	Connessione tra manufatto di trattamento e sistema di smaltimento	25
4	IN	1PIAN	ITI DI SOLLEVAMENTO ACQUE METEORICHE	27
	4.1	DE	FINIZIONE DELLE PERDITE DI CARICO	27
	4	.1.1	Perdite di carico distribuite nelle correnti in pressione	27
	4	.1.2	Perdite di carico localizzate	
	4.2	lм	PIANTO DI SOLLEVAMENTO ACQUE SOMMITALI III LOTTO	29
	4.3	lм	PIANTO DI SOLLEVAMENTO ACQUE FONDO CAVA	31
5	Al	LLEG	ATI	33
	5.1		ATI PLUVIOMETRICI DELLA STAZIONE DI ANDRIA	
	5.2		OGGE INFERIORI ALL'ORA: DEFINIZIONE DELLE ALTEZZE	
	5.3		ABORAZIONE DATI PLUVIOMETRICI - STAZIONE DI ANDRIA (5MIN – 1H)	
	5.4		ABORAZIONE DATI PLUVIOMETRICI - STAZIONE DI ANDRIA (1H – 24H)	
	5.5		ROGETTO E VERIFICA DEL BACINO DI LAMINAZIONE E DISPERSIONE	
		5.5.1	Tempo di ritorno 5 anni	
	_	.5.2	Tempo di ritorno 10 anni	
	_	.5.3	Tempo di ritorno 15 anni	
		.5.4	Tempo di ritorno 20 anni	
		.5.5	Tempo di ritorno 25 anni	
		5.5.6	Tempo di ritorno 50 anni	
		5.5.7	Tempo di ritorno 200 anni	
	5.6		BULATI DI PROGETTO RETE DI DRENAGGIO: CAPPING PROVVISORIO	
	5.7		BUILATI DI VERIFICA RETE DI DRENAGGIO: CAPPING DEFINITIVO	

1 PREMESSA

La corretta regimazione e smaltimento delle acque meteoriche risulta essere un obiettivo principale da raggiungere per ottimizzare la gestione del percolato di discarica (riducendone drasticamente la produzione).

La configurazione progettuale individuata prevede di realizzare una rete di drenaggio così costituita:

- <u>Aree sub pianeggianti dei lotti I e II</u>. Mediante un'apposita riconfigurazione del piano, verranno definite delle nuove pendenze che convoglieranno le acque meteoriche verso l'esterno della discarica (in direzione Nord-Ovest).
- In corrispondenza di tale lato della discarica, verrà posto un canale prefabbricato per la raccolta delle acque di ruscellamento. Tale canale convoglierà le acque in un apposito manufatto di trattamento delle acque di prima pioggia.
- Area sub pianeggiante del lotto III. A seguito degli interventi di rimozione di percolato e biogas, attuati sul III lotto, la sommità del cumulo dei rifiuti abbancati ha subito deformazioni formando un punto basso in corrispondenza della parete nord del lotto III.
- La proposta progettuale prevede la realizzazione di un argine di contenimento posto in corrispondenza della scarpata sud e la riconfigurazione della sommità del III lotto in modo da convogliare tutte le acque in una vasca di accumulo posta in corrispondenza della parete nord e nella quale verrà installato un sistema di sollevamento delle portate di pioggia.
- Scarpate sud del I e II lotto. Le acque precipitate sulle scarpate del I e II lotto e quelle precipitate sulla rampa di accesso al fondo cava, verranno raccolte in una vasca di superficie 13500 mq e capacità complessiva di 13.500 mc. Tale accumulo sarà partizionato in tre vasche ciascuna della quale dotata di un sistema di sollevamento delle acque meteoriche.
- <u>Scarpata sud del III lotto</u>. Le acque precipitate sulla scarpata sud del III lotto verrà convogliata, a mezzo di apposita canaletta, in una delle tre vasche di cui al punto precedente.
- <u>Sistema di raccolta acque dalle scarpate</u>. Al fine di evitare l'insorgenza di fenomeni di erosione delle sponde, è stata prevista la realizzazione di vasche di captazione delle acque meteoriche, da porsi in corrispondenza di ogni berma, e condotte per l'allontanamento delle acque.
- <u>Trattamento delle acque di prima pioggia</u>. In accordo al Progetto Definitivo autorizzato, è previsto un "trattamento blando (grigliatura e sedimentazione)" delle acque meteoriche.
 - Tale trattamento verrà realizzato in una vasca in c.a. all'interno della quale, mediante setti in c.a., si configurano:
 - o Pozzetto di arrivo delle acque raccolte dalla sommità dei lotti I e II;
 - Comparto di grigliatura con griglia verticale a pulizia manuale e, a monte, zona di accumulo del materiale grigliato;
 - Pozzetto di arrivo e di calma delle acque sollevate dagli impianti a servizio del III lotto e delle tre vasche poste a fondo cava;
 - Comparto di dissabbiatura costituito da setti che costringono le acque ad un percorso tale da farle rallentare e, quindi, depositare le sostanze solide sedimentabili. La configurazione dei setti permetterà anche una blanda disoleatura;
 - o Pozzetto di campionamento
- Smaltimento delle acque di pioggia. È stato previsto un sistema di dispersione delle acque meteoriche

sul suolo. Le acque verranno versate in una depressiore realizzata mediante:

- o Spianto degli alberi presenti e procedure per il futuro reimpianto
- o Scavo dell'area
- o Reimpianto di ulivi
- o Realizzazione di un drenaggio eseguito con pietrame grossolano derivante dalle attività di scavo;
- o Realizzazione di "aiuole" in corrispondenza degli ulivi ripiantati con posa di terreno vegetale
- o Finitura della restante area con pietrame minuto.

Al fine di migliorare le caratteristiche disperdenti del sistema di smaltimento, sono stati previsti dei pozzi disperdenti all'interno della stessa depressione.

Nella presente relazione vengono affrontati gli aspetti relativi al dimensionamento / verifica di tutte le opere relative alla gestione delle acque meteoriche precipitate e raccolte nella discarica RSU "Puro Vecchio".

2 STUDIO IDROLOGICO

Lo scopo dello studio idrologico è di pervenire alla valutazione delle principali grandezze idrologiche che intervengono nei calcoli di dimensionamento e della rete di fognatura pluviale di progetto.

Lo studio è così articolato:

- Indagine sul regime delle piogge ed elaborazione dei dati pluviometrici occorrenti per le verifiche idrauliche;
- Determinazione dei coefficienti di afflusso e delimitazione dei bacini principali e sottobacini;
- Scelta della frequenza delle piogge critiche

2.1 INDAGINE SUL REGIME DELLE PIOGGE

Per i dati pluviometrici si è fatto riferimento alla stazione pluviometrica di **Andria** (coordinate 41° 13' 13,71"N; 16° 17' 39,24"E) che presenta una serie cronologica di dati (v. allegato in appendice) sufficientemente ampia.

Il dato fondamentale da cui partire nell'elaborazione statistica è costituito dall'altezza delle precipitazioni riferite ad un intervallo di tempo, da scegliere in funzione dell'ampiezza dell'area interessata e delle sue caratteristiche di impermeabilità.

Infatti, la durata della pioggia più pericolosa cresce all'aumentare della superficie ed al diminuire del coefficiente di afflusso.

Le reti di fognatura pluviale, che come quella di progetto interessano una superficie molto piccola con valori relativamente bassi del coefficiente di afflusso, presentano tempi di corrivazione molto inferiori alle 24 ore. Pertanto, si sono presi in considerazione i dati relativi alle piogge di minore durata, precisamente le "precipitazioni di notevole intensità e breve durata" ed i massimi annuali delle "precipitazioni orarie di durata 1÷24 ore".

Le "precipitazioni di notevole intensità e breve durata" sono però riportate negli annali per una durata variabile e, per taluni anni, non è riportato alcun valore (1971, 1978, 1984, 1985, 1986, 1988, 1989, 1992 e 2006).

La non omogeneità dei dati e la mancanza di taluni altri renderebbe impossibile definire delle curve di possibilità pluviometrica in quanto i dati non risulterebbero utilizzabili.

Al fine di ottenere dati omogenei (altezze di pioggia riferite allo stesso tempo di pioggia e quindi confrontabili), i valori di altezza di pioggia sono stati rapportati alla durata di 5, 10, 15 e 30 minuti, con il criterio delle "altezze ragguagliate".

Supponendo l'intensità di pioggia costante per tutta la durata t_p della pioggia stessa (con t_p sempre minore di 60 min), l'altezza di pioggia h_t , relativa alla durata generica t, si ricava dalla relazione:

$$h_{t} = h_{tp} \times \frac{t}{t_{p}}$$

per durate $t > t_p$ si assumerà l'altezza h_t , se questa risulta maggiore di quella ragguagliata alla pioggia di durata $t > t_p$.

Il metodo adottato si basa sull'ipotesi che durante il tempo di pioggia misurato e riportato negli annali ($t_p < 1$ ora), l'intensità di pioggia sia stata costante per tutto t_p . Basandosi su dati realmente misurati, l'attendibilità

delle curve che ne derivano sarà tanto più elevata quanto il tempo di pioggia misurato si approssimi al tempo di riferimento.

Inoltre, al fine di utilizzare un campione più ampio possibile, laddove non sono stati riportati dati di piogge di massima intensità e breve durata, i valori di h per t 5, 10, 15 e 30 min sono stati desunti dalla formula di Bell che, partendo dalla misurazione dell'altezza di pioggia a 1 ora (h₆₀), consente di calcolare l'altezza di pioggia di durata inferiore ai 60 min mediante:

$$\frac{h_t}{h_{60}} = 0.54 \cdot t^{0.25} - 0.50$$

Pertanto, al fine di ottenere delle curve che restituiscano valori cautelativi, dato un tempo di ritorno T, le curve di possibilità climatica sono state desunte partendo dal massimo dei valori tra quello ricavato con le altezze ragguagliate e quello ricavato con la formula di Bell.

Nell'allegato in appendice sono riportati i valori massimi appena descritti.

Per quanto riguarda le piogge di durata t superiore a 60 minuti si è fatto riferimento direttamente ai valori misurati e riportati negli annali.

I dati sono stati poi elaborati accettando l'ipotesi che i massimi h delle diverse durate siano interpretati dalla distribuzione probabilistica di Gumbel¹.

Con riferimento a tempi di ritorno di 1, 5, 10, 15, 30 e 50 anni si sono ricavati i valori corrispondenti a ciascuna durata, mediante la relazione:

$$h = u - \frac{1}{a} \times \ln \left[\ln \left(\frac{Tr}{Tr - 1} \right) \right]$$

essendo:

$$u = m(h) - \frac{0,5771}{a}$$

$$a = \frac{1,283}{s(h)}$$

$$m(h) = \sum_{i} \frac{h_i}{N}$$

$$s(h) = \sqrt{\sum_{i} \frac{\left[h_{i} - m(h)\right]^{2}}{N - 1}}$$

L'adattamento della legge di Gumbel a ciascuna serie statistica può essere valutato mediante test statistici per accertare o rifiutare l'ipotesi che la legge probabilistica ben si adatti al campione. A tal scopo, l'adattabilità dei dati di osservazione alla legge probabilistica del valore estremo \grave{e} stata poi provata attraverso il metodo del χ^2 di Pearson².

E.J.Gumbel: "Statistics of extremenes" - Columbia University Press, New York, 1967

² "Fognature" di Luigi Da Deppo e Claudio Datei, casa ed. Edizioni Libreria Cortina, Pavia, pag.28

Si suddivide il campione in k intervalli e si indica con N_i il numero delle osservazioni che ricadono nello stesso intervallo, compreso tra i valori X_{i-1} e X_i ; p_i è la probabilità che una osservazione qualsiasi ricada nell'*iesimo* intervallo.

Il Test di Pearson considera la grandezza statistica:

$$\chi^2 = \sum_{i=1}^k i \frac{\left(N_i - Np_i\right)}{Np_i}$$

che esprime il divario fra l'osservazione e la teoria, dove:

Ni rappresenta la frequenza dei valori empirici (ovvero il numero delle osservazioni che ricadono nello stesso intervallo)

Npi rappresenta il numero dei valori della stessa grandezza che scaturiscono dall'ipotesi teorica di distribuzione.

La distribuzione di probabilità $p(X^2)$ dipende solo dal numero di gradi di libertà f imposto con l'equazione:

$$f = k - 1$$

Dove:

f = numero di gradi di libertà;

k = numero di intervalli (o classi) col quale è stato suddiviso il campione;

Per la suddivisione del campione il test di Pearson richiede che almeno 5 osservazioni ricadano mediamente nello stesso intervallo, ovvero:

$$Np_i > 5$$

Fissato un livello di significatività (comunemente pari a 0,05), al variare del numero dei gradi di libertà è definito il valore $X^{\circ 2}$:

f	1	2	3	4	5	6	7	8	9	10
X° ²	3,84	5,99	7,81	9,49	11,1	12,6	14,1	15,5	16,9	18,3

Confrontando il valore calcolato del X^2 con il valore tabellato di $X^{\circ 2}$ si ritiene che l'ipotesi di buon adattamento della distribuzione della serie sia soddisfatto se

$$\chi^2 < \chi^{\circ 2}$$

Il test del χ^2 di Pearson mostra per la stazione pluviometrica di **Andria** una **buona adattabilità dei dati di osservazione alla legge di Gumbel**. Infatti, come riportato nei tabulati in allegato, il valori del χ^2 per le durate prescelte risulta sempre più basso del χ^2 .

In particolare, data l'estensione del campione (44 dati utili), il numero degli intervalli risulta essere pari a 8, quindi il grado di libertà (f) sarà pari a 7 (f=k-1=8-1). A tale grado di liberà corrisponde un valore di **X°² pari a 14,1**. Di seguito si riporta un breve riepilogo dei parametri calcolati di X² per le piogge di forte intensità e breve durata:

Frequenza	5 min	10 min	15 min	30 min	60 min
X ²	6,55	4,73	2,91	8,73	1,45

Ed il riepilogo dei parametri calcolati di X² per le precipitazioni orarie di durata 1÷24 ore

Frequenza	1 ora	3 ore	6 ore	12 ore	24 ore
X ²	1,48	14,18	12,73	3,27	10,55

Per ciascun tempo di ritorno la determinazione del legame funzionale fra le altezze di pioggia h e le durate T si ottiene adottando un'espressione monomia del tipo:

$$h = a \times t^n$$

che nel piano logaritmico si trasforma nella retta di equazione:

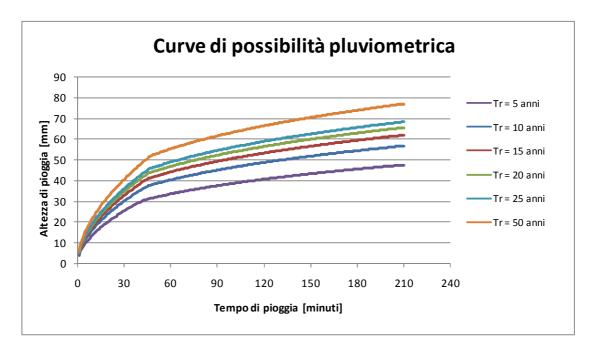
$$\log(h) = \log(a) + n \times \log(t)$$

La regolarizzazione dei dati compresi in ciascun intervallo è stata infine ottenuta con il metodo dei minimi quadrati risolvendo il sistema:

$$n\sum (\log(t))^{2} + \log(a) \times \sum (\log(t)) = \sum (\log(t) \times \log(h))$$
$$n\sum (\log(t)) + m \times \log(a) = \sum (\log(h))$$

dove m è il numero delle durate prese in esame ed a e n sono rispettivamente il coefficiente e l'esponente delle curve di possibilità pluviometrica.

In tal modo si sono ottenuti i parametri a ed n riferiti alle durate 5min-1h e 1h-24h che hanno mostrato valori caratteristici di un regime tipicamente mediterraneo, simili a quelle riscontrate per territori limitrofi.


Di seguito si riportano i valori di a ed n riferiti alle durate 5min-1h:

Tr =	5 anni	a =	36,77	n =	0,539
Tr =	10 anni	a =	43,77	n =	0,543
Tr =	15 anni	a =	47,72	n =	0,545
Tr =	20 anni	a =	50,49	n =	0,546
Tr =	30 anni	a =	52,62	n =	0,546
Tr =	50 anni	a =	59,18	n =	0,548

Di seguito si riportano i valori di a ed n riferiti alle durate 1h-24h:

Tr =	5 anni	a =	33,52	n =	0,278
Tr =	10 anni	a =	40,31	n =	0,272
Tr =	15 anni	a =	44,14	n =	0,270
Tr =	20 anni	a =	46,82	n =	0,268
Tr =	30 anni	a =	48,88	n =	0,267
Tr =	50 anni	a =	55.25	n =	0.264

Di seguito si riporta la rappresentazione grafica delle curve di possibilità climatica individuate

2.2 COEFFICIENTI DI AFFLUSSO

Il coefficiente di afflusso in fognatura è stato determinato tenendo conto dei valori reperibili in letteratura³

Tipi di superficie	φ
Tetti metallici	0,95
Tetti a tegole	0,90
Tetti piani con rivestimento in calcestruzzo	0,70 - 0,80
Tetti piani ricoperti di terra	0,30 - 0,40
Pavimentazioni asfaltate	0,85 - 0,90
Pavimentazioni in pietra	0,80 - 0,85
Massicciata in strade ordinarie	0,40 - 0,80
Strade in terra	0,40 - 0,60
Zone con ghiaia non compressa	0,15 - 0,25
Giardini	0,00 - 0,25
Boschi	0,10 - 0,30
Parti centrali di città completamente edificate	0,70 - 0,90
Quartieri con pochi spazi liberi	0,50 - 0,70
Quartieri con fabbricati radi	0,25 – 0 50
Tratti scoperti	0,10 - 0,30
Giardini e cimiteri	0,05 - 0,25
Terreni coltivati	0,20 - 0,60

_

³ "Fognature" di Luigi Da Deppo e Claudio Datei, casa ed. Edizioni Libreria Cortina, Padova, tab. 5.1 a pag. 85

Nel caso in esame, i calcoli e le verifiche dell'intero sistema di drenaggio/smaltimento delle portate meteoriche, sono stati effettuati valutando la condizione peggiorativa che si viene ad identificare durante la post-gestione della discarica Puro Vecchio.

In particolare si vengono ad individuare le seguenti configurazioni:

- Capping provvisorio del comparto discarica finito con il telo in HDPE.
- Capping definitivo finito col terreno vegetale.

La configurazione più restrittiva corrisponde alla fase di capping provvisorio, per cui si è utilizzato un coefficiente medio di afflusso di 0,85.

Considerando la quasi completa impermeabilizzazione dell'area in esame, si è ritenuto che il coefficiente di afflusso abbia, sin dai primi istanti di pioggia, il massimo valore, indipendentemente dall'altezza di pioggia.

2.3 SCELTA DELLA FREQUENZA DELLE PIOGGE CRITICHE

Elaborate le curve o le equazioni di possibilità pluviometrica, caratterizzate da valori costanti di frequenza e quindi di probabilità, occorre scegliere la frequenza adatta al tipo di opere da progettare.

A tal proposito il Regolamento Regionale 9 dicembre 2013, n. 26 (pubblicato sul BURP n.166 del 17.12.2013) prevede che le reti siano dimensionate per "un tempo di ritorno non inferiore ai 5 (cinque) anni".

Al fine di garantire lo smaltimento delle acque meteoriche in qualsiasi condizione, la verifica del recapito finale è stata effettuata con differenti tempi di ritorno (da 5 a 200 anni).

3 RETE DI DRENAGGIO

3.1 CONFIGURAZIONE INTERVENTI DI REGIMAZIONE

In funzione della fase di post gestione della discarica "Puro Vecchio", sono state individuate n.2 configurazioni dell'intero sistema di drenaggio delle acque meteoriche.

In particolare in fase di capping provvisorio il sistema di drenaggio delle acque meteoriche prevede:

- 1. riconfigurazione morfologica del piano sub-orizzontale dei lotti I e II mediante:
 - la posa di materiale inerte sull'attuale piano che determini una pendenza verso l'esterno della cava:
 - il completamento della posa di una geomembrana in HDPE
- 2. posa di un canale prefabbricato in c.a. per la raccolta delle acque di ruscellamento derivanti dalla riconfigurazione morfologica di cui al punto precedente;
- 3. riconfigurazione morfologica del piano sub-orizzontale del lotto III mediante:
 - la posa di materiale inerte sull'attuale piano che determini una pendenza verso il punto depresso esistente e che definisca, in tale punto, un volume di accumulo di circa 1.700 mc;
 - la posa, su tutto il piano riconfigurato, di uno strato drenante di h=50 cm per il dreno del biogas di discarica;
 - · la posa di una geomembrana in HDPE;
 - l'installazione di un pozzo per il sollevamento delle acque meteoriche composto da tubazione fessurata in polietilene con elettropompa alloggiata al suo interno;
- 4. riconfigurazione del fondo cava in modo da realizzare n. 3 vasche di accumulo mediante la posa di materiale argilloso;
- 5. istallazione, in ciascuna vasca posta sul fondo della discarica di n.1 pozzo di sollevamento composto da tubazione fessurata in polietilene con elettropompa alloggiata al suo interno;
- 6. impermeabilizzazione della scarpata del III lotto mediante geomembrana in HDPE posta previa riconfigurazione delle scarpate e delle berme. In particolare le berme della scarpata del III lotto saranno sagomate in modo da convogliare le acque verso una delle vasche di accumulo;
- 7. realizzazione di un impianto di trattamento delle acque meteoriche che preveda grigliatura e dissabbiatura;
- 8. realizzazione di un idoneo sistema di smaltimento nei primi strati del sottosuolo delle acque trattate.

In fase di capping definitivo, il sistema appena descritto sarà intergrato prevedendo un rimodellamento della pendenza delle berme poste sulle scarpate del I e II lotto in modo da convogliare le acque verso l'interno della scarpata dove verranno installate delle canaline di raccolta. Da qui le acque raggiungeranno le vasche poste a fondo cava.

3.2 DIMENSIONAMENTO DELLA RETE

Il dimensionamento della rete di raccolta ed allontanamento delle acque meteoriche precipitate sulle superfici sub-orizzontali dei lotti di discarica e sulle scarpate interne della cava, è stato effettuato utilizzando le curve di possibilità climatica relative ad un tempo di ritorno Tr = 5 anni garantendo un franco minimo del 25%.

Note le curve di piogge caratteristiche per il tempo di ritorno di 5 anni, per il corretto dimensionamento della rete di drenaggio è necessario definire i bacini afferenti alla rete stessa.

Riguardo la definizione dei bacini afferenti, la normativa di riferimento è contenuta nel **Regolamento Regionale 9 dicembre 2013, n. 26**, pubblicato sul Bollettino Ufficiale della Regione Puglia n. 166 del 17.12.2013. Tale Regolamento Regionale, all'art.3, comma 1, definisce:

- "a. <u>Acque meteoriche di dilavamento</u>: le acque di pioggia che precipitano sull'intera superficie impermeabilizzata scolante afferente allo scarico o all'immissione;
- b. <u>Acque di prima pioggia</u>: le prime acque meteoriche di dilavamento relative ad ogni evento meteorico preceduto da almeno 48 (quarantotto) ore di tempo asciutto, per una altezza di precipitazione uniformemente distribuita:
- I. di 5 (cinque) mm per superfici scolanti aventi estensione, valutata al netto delle aree a verde e delle coperture non carrabili che non corrivano sulle superfici scolanti stesse, inferiore o uguale a 10.000 (diecimila) mq"

Considerando che, nelle condizioni peggiorative (capping provvisorio) si può considerare l'intera superficie impermeabilizzata, l'estensione dei bacini per la definizione delle acque di prima pioggia corrisponde con l'estensione dei bacini necessaria a dimensionare l'intera rete.

In funzione alla disposizione del sistema di captazione delle acque, e alle caratteristiche orografiche delle superfici sottese dalla rete stessa, l'intero bacino scolante è stato suddiviso in più sotto bacini.

3.2.1 Calcoli idraulici per la rete a pelo libero

Per i calcoli idraulici della rete di fognatura è stata utilizzata la formula di Chézy4:

$$Q = A \cdot \chi \cdot \sqrt{R \cdot i_f}$$

essendo:

Q la portata

A la sezione liquida

R il raggio idraulico

i_f la pendenza del fondo

χ il coefficiente di attrito

Per esprimere quest'ultimo si è stata utilizzata l'espressione di Bazin:

$$\chi = \frac{87\sqrt{R}}{\gamma + \sqrt{R}}$$

La definizione del coefficiente di scabrezza (γ) di Bazin è stata effettuata tenendo conto di valori di letteratura che, per condotte in calcestruzzo, riportano valori del coefficiente variabili tra 0.10 e 0.23 m^{1/2}. Si **assunto il valore di 0,23 per il coefficiente di scabrezza** γ, adatto a tubazioni in calcestruzzo armato.

Il progetto e la verifica della rete di progetto è stato effettuato utilizzando un modello matematico basato sul metodo dell'invaso⁵ che consente il dimensionamento e la verifica della rete in funzione dei diversi eventi meteorici.

⁴ "Fognature" di Luigi Da Deppo e Claudio Datei, casa ed. Edizioni Libreria Cortina

Chiamando:

p la portata che affluisce nella rete nell'istante t;

q la portata che ne defluisce nello stesso istante t;

V il volume d'acqua invasato nel tempo dt,

l'equazione di continuità può scriversi come

$$pdt = qdt + dV$$

Consideriamo ora l'equazione del moto dell'acqua

$$i_f - \frac{\delta Y}{\delta x} = \frac{U^2}{C^2 R} + \frac{\alpha}{2g} \frac{\delta U^2}{\delta x} + \frac{\beta}{g} \frac{\delta U}{\delta t}$$

Dove

i_f pendenza del fondo

Y altezza del livello idrico

U velocità media nella sezione

R raggio idraulico

g accelerazione di gravità

C coefficiente che rappresenta la scabrezza delle pareti

α coeff. che tiene conto della differente velocità nei vari filetti idrici (cfr. *Le reti idrauliche* di G. Supino, pag. 319) pari a circa 1,11

β coeff. che tiene conto della differente velocità nei vari filetti idrici (cfr. *Le reti idrauliche* di G. Supino, pag. 319) pari a circa 1,03

nell'ipotesi che il pelo libero si mantenga parallelo al fondo, il termine $\delta Y/\delta x$ è pari a zero ed i termini $\delta U^2/\delta x$ e $\delta U/\delta t$ sono trascurabili. Ne consegue quindi la proporzionalità tra il volume d'acqua V e la sezione bagnata Ω , ovvero:

$$V = \mu' \Omega$$

 μ' si determina osservando che quando il canale (o la condotta) è pieno l'acqua occuperà completamente il volume disponibile V_0 e la sezione totale Ω_0 . Si avrà quindi che μ' = V_0/Ω_0 . Quindi

$$V = \frac{V_0}{\Omega_0} \Omega$$

Ma l'area bagnata e la portata che defluisce dal tratto in esame dipendono entrambe dall'altezza d'acqua Y, quindi si può desumere che la portata q dipenda dalla sezione bagnata

$$q = q(\Omega)$$

Rappresentabile, con buona approssimazione per mezzo di

$$q = \mu \Omega^{\alpha}$$

Con μ ed α costanti e dipendenti dalla forma del canale (per condotte di fognatura \Box è pari ad 1). Considerando la sezione piena μ = Q/ Ω_0 si ha che

⁵ "Le reti idrauliche" di G. Supino, casa ed .Pàtron Editore, Bologna.

$$q = \frac{Q}{\Omega_0^{\alpha}} \Omega^{\alpha}$$

Quindi l'equazione di continuità può scriversi come

$$pdt = qdt + dV = qdt + \frac{V_0}{\Omega_0} d\Omega = qdt + \frac{V_0}{\alpha Q^{\frac{1}{\alpha}}} q^{\frac{1-\alpha}{\alpha}} dq$$

Posto z = q/p segue

$$dt = \frac{Vp^{\frac{1}{\alpha}-1}}{\alpha O^{\frac{1}{\alpha}}} \frac{z^{\frac{1}{\alpha}-1}}{1-z} dz$$

Supponendo che, per una data pioggia, la portata p che affluisce nella rete sia costante nel tempo e imponendo il seguente raggruppamento di valori

$$G = \frac{V}{\alpha O^{\frac{1}{\alpha}} p^{\frac{\alpha - 1}{\alpha}}}$$

L'equazione di continuità si riduce a

$$dt = G \frac{z^{\frac{1}{\alpha} - 1}}{1 - z} dz$$

Integrando, in un intervallo tra t₁ e t₂ si ha

$$t_2 - t_1 = G \int_{z_1}^{z_2} \frac{z^{\frac{1}{\alpha} - 1}}{1 - z} dz$$

Dove a z_1 e z_2 corrispondono le portate defluenti q_1 e q_2 ($q_1>q_2$). Nell'ipotesi di condotta circolare, come detto il fattore α assume il valore 1, quindi la formula precedente assume la forma

$$t_2 - t_1 = \frac{V_0}{Q} \left(\ln \frac{1}{1 - z_2} - \ln \frac{1}{1 - z_1} \right)$$

Oppure, essendo $z_1 = q_1/p$ e $z_2 = q_2/p$ (ricordando che è stata ipotizzata p costante)

$$t_2 - t_1 = \frac{V_0}{Q} \ln \frac{p - q_1}{p - q_2}$$

Se il canale è inizialmente vuoto (ovvero t_1 =0, q_1 =0) il tempo T_R (tempo di riempimento) necessario perché il tatto si riempia (quindi che q_2 =Q) è dato dalla formula:

$$T_R = \frac{V_0}{Q} \ln \frac{p}{p - Q}$$

Considerando ora il termine Z = Q/p (dove Q è la portata di colmo che può transitare nel tronco in esame la quale dipende dalle caratteristiche della condotta, e p è la portata meteorica che affluisce al tronco in esame e che dipende esclusivamente dalla curva di possibilità pluviometrica e dalle caratteristiche del bacino scolante), il tempo di riempimento T_R diviene:

$$T_R = \frac{V_0}{Q} \ln \frac{1}{1 - Z}$$

Nell'ipotesi che la rete possa funzionare, per taluni tratti, sotto carico, il tronco ricevente entrerebbe in pressione prima della fine della pioggia (t<tp) rendendo impossibile la definizione del tempo di riempimento del singolo tronco. Occorre dunque procedere per tentativi supponendo che nei tronchi affluenti sia invasato un certo volume V_1 e, in base a questo calcolare il tempo di riempimento del ricevente. Successivamente bisogna verificare se, dopo il tempo appena calcolato, il volume invasato della rete sia effettivamente V_1 e, se necessario iterare il calcolo sino alla definizione del V corretto.

Al fine di risolvere la determinazione del volume invasato nel tronco, piuttosto che risolvere il sistema in modo iterativo partendo, magari da valori definiti con formule empiriche, il modello di calcolo utilizzato utilizza la formula precedente ponendo in evidenza il volume.

$$V_0 = \frac{T_r Q}{\ln\left(\frac{1}{1 - Z}\right)}$$

Che, per il tempo di pioggia t_p, da il volume di invaso V

$$V = \frac{t_p Q}{\ln\left(\frac{1}{1 - Z}\right)}$$

Ovvero

$$V = \frac{t_p \cdot Q}{\ln(\Sigma/\Sigma - 1)}$$

Dove V è il volume di invaso dato dalla somma dei seguenti componenti:

- volume invasato nella rete a monte del tronco in esame.
- volume invasato nel tronco stesso
- volume degli invasi superficiali e del velo idrico. Considerando che il capping provvisorio non presenti avvallamenti che possano determinare degli invasi superficiali, tale ultimo valore è dato esclusivamente dal volume del velo idrico. Ipotizzando un velo idrico omogeneo di soli 0,5 mm, il volume invasato dal velo idrico (e quindi il volume degli invasi superficiali e del velo idrico) è stato considerato pari a 5 mc/ettaro.

e Σ è pari a 1/Z, ovvero:

$$\Sigma = \varphi \cdot a \cdot t_p^{n-1} \cdot \frac{A}{Q}$$

Dove:

- φ il coefficiente di afflusso ottenuto come media ponderale dei coefficienti di afflusso relativi ai singoli bacini parziali sottesi dai tronchi a monte;
- a, n parametri della curva di possibilità climatica (relativa al tempo di ritorno di progetto)
- $a \cdot t_n^{n-1}$ intensità di pioggia (mm/sec)
- Q la portata che defluisce dal tronco (in mc/sec);

A l'area totale, somma dell'area propria del tronco e di quella relativa ai bacini sottesi dai tronchi di monte (l'estensione del bacino è misurata in ettari)

Per un dato tronco (caratterizzato da una superficie scolante) e per date curve di possibilità climatica, il volume di invaso è funzione del tempo di pioggia, quindi:

$$V = V(t_p) \tag{1}$$

consente di calcolare il volume d'invaso V in funzione della durata t_p della pioggia, per cui il massimo volume d'invaso lo si ottiene derivando la precedente rispetto al tempo e risolvendo l'equazione:

$$\frac{dV(t_p)}{dt} = 0 \qquad (2)$$

Il modello di calcolo utilizzato, in una prima fase, consente, con la risoluzione del sistema formato dalla (1) e (2), di determinare la sezione teorica che, con un determinato **franco** (che si è assunto **pari al 25%**), realizza un volume d'invaso uguale a quello massimo necessario. Il tutto con un ordine di approssimazione percentuale di qualche millesimo.

Nella seconda fase lo stesso modello esegue la verifica della rete con le sezioni di progetto utilizzata per i singoli tratti.

Al fine di massimizzare la sicurezza del funzionamento della rete, non si è tenuto conto del fatto che l'altezza di pioggia media diminuisce all'aumentare dell'area del bacino considerandola uniforme su tutto il bacino (non verranno guindi considerate le formule del Puppini).

Nelle tabelle in appendice si riportano i calcoli di progetto e verifica della rete pluviale secondo quanto detto nel precedente paragrafo.

Nel nostro caso, con un tempo di ritorno di 5 anni, corrispondono due curve pluviometriche valutate tenendo conto degli eventi meteorici di durata compresa tra i 5 minuti e 1 ora:

$$h = 36,77 \times t^{0,539}$$

E tenendo conto degli eventi contraddistinti da durate comprese tra 1 e 24 ore:

$$h = 33.52 \times t^{0.278}$$

3.2.2 Calcoli idraulici per le aree sottoposte al piano campagna

Considerando la posizione della sommità del III lotto e del fondo cava (interrati rispetto al piano campagna), e acque meteoriche dovranno essere sollevate per essere smaltite.


I bacini sottoposti possono essere distinti in:

- bacini sub-pianeggianti (ovvero il bacino dato dalla sommità del III lotto di discarica) con estensione
 limitata
- bacini a fortissima pendenza ed estensione limitata.

Se per la prima tipologia di bacino in letteratura vi sono metodologie sperimentate ed affidabili che definiscono, in base a delle curve di possibilità pluviometrica, adeguati valori di portata di picco (e, quindi di volume di pioggia), per la seconda tipologia non vi è nulla di sperimentato ed affidabile. Al fine di dimensionare, con adeguato franco di sicurezza, le opere necessarie alla regimazione e all'allontanamento delle acque meteoriche anche per i bacini a fortissima pendenza ed estensione limitata (scarpate interne alla cava), verranno utilizzati due distinti metodi descritti di seguito.

3.2.2.1 Bacino sub-pianeggiante. Sommità del III lotto

Per il calcolo della portata al colmo, si è utilizzata la metodologia proposta dal Soil Conservation Service. Questo metodo considera un idrogramma approssimato di forma triangolare con una fase crescente di durata t_a (tempo di accumulo) ed una fase di esaurimento di durata t_e (tempo di esaurimento), con t_b durata dell'evento di piena.

Idrogramma triangolare utilizzato per il calcolo della portata al colmo con il metodo SCS

A seguito di analisi sperimentali dell'SCS è stato stabilito che nella fase crescente dell'idrogramma defluisce un volume idrico che è pari al 37,5% del volume totale V di deflusso. Ne consegue che la durata della fase crescente (t_a) è pari a 0,375 volte la durata dell'evento di piena t_b e pertanto:

$$t_b = 2,67t_a$$

Di conseguenza è possibile esprimere la portata al colmo secondo al relazione qui di seguito riportata

$$Q_P = 0.208 \frac{V \cdot A}{t_a}$$

in cui:

V volume di deflusso espresso in mm;

A area del bacino espressa in Km²;

t_a tempo di accumulo espresso in ore.

La definizione di t_a, nell'ipotesi di precipitazione con intensità costante di durata t_p è data da

$$t_a = 0.5t_p + t_L$$

Dove t_L è il tempo di ritardo, pari alla distanza tra il baricentro dello ietogramma ed il picco dell'idrogramma triangolare.

Per la determinazione del tempo di ritardo t_L si è fatto riferimento alla formula di Mockus⁶.

$$t_L = 0.342 \frac{L^{0.80}}{s^{0.50}} \left(\frac{1000}{CN} - 9 \right)^{0.70}$$

Dove

s pendenza del bacino in %.

L lunghezza dell'asta principale espresse in Km.

⁶ "La sistemazione dei bacini idrografici" di Vito Ferro, casa ed. McGraw Hill

CN valore del Curve Number in funzione delle condizioni idrologiche dei suoli e dell'uso⁷. Per il caso in esame, trattandosi di geomembrane impermeabili si assume il valore massimo di CN=100

Sulla base di determinazioni empiriche effettuate dall'SCS, è possibile affermare che:

$$t_a = \frac{t_L}{0,90}$$
 $t_p = \frac{t_L}{4,50}$

Bacino	A [mq]	CN	L [m]	Quota max [m slm]	Quota min [m slm]	s [%]	t _∟ [ore]	t _a [ore]	t _p [ore]
III lotto	39800	100	175	46	42	2,29%	0,193	0,214	0,043

Al fine di definire la portata di progetto (valutata con un tempo di ritorno 5 anni) è stata utilizzata la formula razionale

$$Q_P = \phi \frac{h}{t_c} \frac{A}{3600}$$

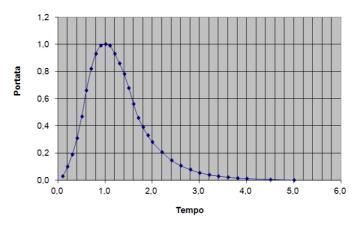
dove ϕ = coefficiente di afflusso (posto pari a 0,85)

A = superficie del bacino (mq)

t_c = tempo di corrivazione imposto pari al t_p

h = altezza di pioggia (m) valutata con le curve di pioggia a Tr=5 anni ricavate per eventi di forte intensità e breve durata (in quanto risulta un tempo di accumulo molto inferiore all'ora)

$$h = a \cdot t_p^n = 36,77 \cdot t_p^{0,539}$$


La portata di colmo Q_P sarà pari a:

Bacino	A [mq]	t _p [ore]	φ	а	n	h [m]	Q _p [mc/sec]
III lotto	39.800	0,043	0,85	36,77	0,539	0,00672	1,475

Per la valutazione del volume di piena sotteso dall'idrogramma a 5 anni si è utilizzato l'idrogramma unitario del SCS, relativo al volume di deflusso V pari a 1 mm, si costruisce a partire dall'idrogramma adimensionale di Mockus che è una curva adimensionale che mette in relazione il rapporto tra la generica portata Q all'istante t e la portata al colmo Q_p che si verifica all'istante t_a (durata della fase di crescita) con la variabile adimensionale t/t_a .

⁷ "La sistemazione dei bacini idrografici" di Vito Ferro, casa ed. McGraw Hill, pag. 198

Idrogramma di Mockus

Per definire il volume d'acqua che interessa la sezione di controllo per la durata dell'evento di piena e dunque per stabilire la capacità della vasca bisogna integrare l'idrogramma di piena ovvero definire l'area sottostante la curva dell'idrogramma, utilizzando il metodo alle differenze finite.

Di seguito si riporta la tabella di calcolo dei volumi discretizzando l'idrogramma unitario alle differenze finite.

dt	Q	Q _{medie}	Volumi da invasare	Volumi progressivi
0,021	0,044	0,022	1,705	1,705
0,043	0,147	0,096	7,387	9,091
0,064	0,280	0,214	16,478	25,569
0,086	0,457	0,369	28,410	53,980
0,107	0,693	0,575	44,320	98,300
0,128	0,973	0,833	64,208	162,508
0,150	1,209	1,091	84,095	246,603
0,171	1,372	1,291	99,437	346,039
0,193	1,460	1,416	109,096	455,135
0,214	1,475	1,468	113,074	568,209
0,235	1,460	1,468	113,074	681,282
0,257	1,372	1,416	109,096	790,378
0,278	1,268	1,320	101,709	892,088
0,300	1,150	1,209	93,186	985,274
0,321	1,003	1,077	82,958	1.068,233
0,342	0,826	0,914	70,458	1.138,690
0,364	0,678	0,752	57,957	1.196,648
0,385	0,575	0,627	48,298	1.244,945
0,407	0,487	0,531	40,911	1.285,857
0,428	0,413	0,450	34,661	1.320,517
0,471	0,305	0,359	55,344	1.375,861
0,514	0,217	0,261	40,229	1.416,090
0,556	0,158	0,187	28,865	1.444,955
0,599	0,114	0,136	20,910	1.465,865
0,642	0,081	0,097	15,001	1.480,866
0,685	0,059	0,070	10,796	1.491,662
0,728	0,043	0,051	7,841	1.499,503

dt	Q	Q _{medie}	Volumi da invasare	Volumi progressivi
0,771	0,031	0,037	5,682	1.505,185
0,813	0,022	0,027	4,091	1.509,276
0,856	0,016	0,019	2,955	1.512,231
0,963	0,007	0,012	4,546	1.516,777
1,070	0,000	0,004	1,421	1.518,197

Da cui deriva un volume di pioggia con Tr=5 anni di circa 1.520 mc.

In corrispondenza dell'esistente depressione che sui è formata sulla copertura del III lotto, verrà realizzato un bacino di accumulo di capacità utile pari a 1.700 mc. In tal modo, l'intero evento meteorico caratterizzato da Tr=5 anni sarà contenuto nel bacino di laminazione. Al termine della pioggia verrà attivato l'impianto di sollevamento che porterà tutte le acque meteoriche all'impianto di trattamento e, quindi, allo smaltimento finale.

Utilizzando la stessa metodologia per Tr=200 anni sono stati definiti i valori di portata di picco e di volume complessivo da sollevare.

Bacino	A [mq]	t _p [ore]	φ	а	n	h [m]	Q _p [mc/sec]
III lotto	39.800	0,043	0,85	72,18	0,551	0,01272	2,792

dt	Q	Q _{medie}	Volumi da invasare	Volumi progressivi
0,021	0,084	0,042	3,227	3,227
0,043	0,279	0,181	13,982	17,208
0,064	0,530	0,405	31,190	48,399
0,086	0,865	0,698	53,776	102,175
0,107	1,312	1,089	83,891	186,066
0,128	1,843	1,577	121,534	307,600
0,150	2,289	2,066	159,178	466,778
0,171	2,596	2,443	188,217	654,994
0,193	2,764	2,680	206,501	861,495
0,214	2,792	2,778	214,029	1075,524
0,235	2,764	2,778	214,029	1289,554
0,257	2,596	2,680	206,501	1496,054
0,278	2,401	2,499	192,519	1688,573
0,300	2,178	2,289	176,386	1864,959
0,321	1,898	2,038	157,027	2021,986
0,342	1,563	1,731	133,365	2155,351
0,364	1,284	1,424	109,703	2265,054
0,385	1,089	1,186	91,420	2356,474
0,407	0,921	1,005	77,438	2433,912
0,428	0,782	0,851	65,607	2499,519
0,471	0,578	0,680	104,756	2604,275
0,514	0,410	0,494	76,147	2680,422

dt	Q	Q _{medie}	Volumi da invasare	Volumi progressivi
0,556	0,299	0,355	54,637	2735,059
0,599	0,215	0,257	39,579	2774,638
0,642	0,154	0,184	28,394	2803,032
0,685	0,112	0,133	20,435	2823,467
0,728	0,081	0,096	14,842	2838,309
0,771	0,059	0,070	10,755	2849,064
0,813	0,042	0,050	7,744	2856,808
0,856	0,031	0,036	5,593	2862,401
0,963	0,014	0,022	8,604	2871,005
1,070	0,000	0,007	2,689	2873,694

In prossimità della scarpata interna del III lotto verrà realizzato un argine capace di contenere circa 2.900 mc.

3.2.2.2 Bacini a fortissima pendenza ed estensione limitata. Scarpate dei lotti I, II e III

Per tali tipologie di bacino, il volume complessivo da accumulare temporaneamente è stato valutato moltiplicando la superficie complessiva del bacino per il massimo valore registrato di pioggia caduta nelle 24 ore. In particolare risulta:

- La superficie complessiva (valutata come proiezione sul piano orizzontale) del bacino ammonta a circa 67.500 mq, di cui circa 42.000 mq relativi alle scarpate e la restante parte relativa alla superficie delle vasche ed a quelle ad esse afferenti
- L'altezza di precipitazione alle 24 ore più elevata ammonta a 118,4 mm, misurata il 17 settembre del 1970. Per le prossime valutazioni, tale altezza verrà approssimata a 120 mm.

Da tali valori si desume un volume di laminazione pari a:

$$V = S \times h = 67.530 \times 0.120 = 8.103,60 \approx 8.110 mc$$

Considerando che il volume di accumulo utile delle tre vasche (ipotizzando il riempimento per 2 m) poste al fondo della cava è di oltre 18.000 mc (leggermente superiore a quanto previsto dal progetto definitivo), il sistema risulta verificato con un fattore di sicurezza superiore a 2, tale quindi da accogliere due eventi di massima intensità.

Un'analisi più approfondita è stata condotta per definire il funzionamento dei tre impianti di sollevamento.

In particolare è stato discretizzato l'intero bacino afferente alle vasche di fondo cava in base ai reali afflussi che alimentano ciascuna vasca. In particolare:

Vasca	Bacini affluenti	Superficie bacini affluenti
Vasca fondo cava n.1	Scarpata I Lotto, parte della scarpata del II lotto, rampa di discesa a fondo cava, scarpata ovest della cava e superficie vasca	22.500 mq
Vasca fondo cava n.2	Parte della scarpata del II lotto, scarpata ovest della cava e superficie vasca	20.000 mq
Vasca fondo cava n.3	Parte della scarpata del II lotto, scarpata ovest della cava e superficie vasca.	25.000 mq

Vasca	Bacini affluenti	Superficie bacini affluenti
	Scarpata del III lotto	

I volumi minimi da accumulare in ciascuna vasca (considerando un'altezza media di 120 mm) saranno:

Vasca	Superficie bacini affluenti	Volumi minimi da laminare		
Vasca fondo cava n.1	22.500 mq	2.700 mc		
Vasca fondo cava n.2	20.000 mq	2.400 mc		
Vasca fondo cava n.3	25.000 mq	3.000 mc		

Ipotizzando di installare, in ciascuna vasca di accumulo temporaneo, un impianto di sollevamento composto da 1+1R pompa da 50 l/sec (180 mc/ora), ciascuna vasca si vuoterà rispettivamente in:

Vasca	Volumi minimi da laminare	Tempo di svuotamento
Vasca fondo cava n.1	2.700 mc	15 ore
Vasca fondo cava n.2	2.400 mc	13 ore
Vasca fondo cava n.3	3.000 mc	17 ore

Dovendo allontanare le acque entro le 48 ore successive da ciascun evento meteorico, è possibile anche prevedere lo svuotamento in serie delle tre vasche e non contemporaneo.

3.3 Trattamento e smaltimento acque

3.3.1 Trattamento delle acque meteoriche

In accordo al Progetto Definitivo autorizzato, è previsto un "trattamento blando (grigliatura e sedimentazione)" delle acque meteoriche.

Tale trattamento verrà realizzato in una vasca in c.a. all'interno della quale, mediante setti in c.a., si configurano:

- o Pozzetto di arrivo delle acque raccolte dalla sommità dei lotti I e II;
- Comparto di grigliatura con griglia verticale a pulizia manuale e, a monte, zona di accumulo del materiale grigliato;
- Pozzetto di arrivo e di calma delle acque sollevate dagli impianti a servizio del III lotto e delle tre vasche poste a fondo cava;
- Comparto di dissabbiatura costituito da setti che costringono le acque ad un percorso tale da farle rallentare e, quindi, depositare le sostanze solide sedimentabili. La configurazione dei setti permetterà anche una blanda disoleatura;
- o Pozzetto di campionamento

In particolare le acque provenienti dalle canaline di raccolta delle acque di scorrimento superficiale dei lotti I e II raggiungeranno il **comparto di grigliatura** entro il quale è posta una griglia in acciaio zincato a caldo posta in posizione verticale. Tale griglia è posta su di un setto in calcestruzzo in modo da creare, a monte, un pozzetto per l'accumulo del materiale grigliato. In questo modo si raggiungeranno i seguenti obiettivi:

- facilità di pulizia della griglia con rimozione del materiale grigliato che sarà delimitato in un unico pozzetto;
- ottimizzazione del funzionamento del comparto di grigliatura. Infatti, la posizione della griglia permette di far precipitare il materiale grossolano in un pozzetto, mantenendo quindi, inalterato il grado di intasamento della griglia stessa.

Le acque grigliate raggiungeranno un **comparto di calma** entro il quale giungeranno le acque provenienti dagli impianti di sollevamento. Tali acque non necessitano di una grigliatura in quanto il materiale grossolano è stato trattenuto a monte delle elettropompe.

Tale comparto è configurato in modo che le acque sollevate possano rallentare e dissipare la loro energia grazie al "cuscino d'acqua" che si viene a formare grazie a setti in calcestruzzo appositamente realizzati.

Tutte le acque (quelle provenienti dalla sommità dei lotti I e II e quelle sollevate dal III lotto e dal fondo cava) procederanno all'interno del **comparto di dissabbiatura**.

Tale comparto è definito da appositi setti in calcestruzzo che costringono le acque ad un percorso tale da farle rallentare e, quindi, depositare le sostanze solide sedimentabili. La configurazione dei setti permetterà anche una blanda disoleatura.

Tutte le acque terminano in un **pozzetto di campionamento** ricavato con un semplice abbassamento del fondo della vasca rispetto allo scorrimento della condotta in uscita.

Tutte le acque trattate saranno convogliate verso il bacino di laminazione/smaltimento a mezzo di una condotta interrata, sino al superamento dei tratti di viabilità interna. Da qui proseguiranno, sino al bacino di smaltimento, entro un canale a cielo aperto.

L'intero impianto di trattamento è stato dimensionato per poter trattare la somma tra la portata con Tr=5 anni che perviene dalla sommità dei lotti I e II ed il massimo valore di portata che può essere sollevato in contemporaneo.

3.3.2 Dimensionamento del sistema di smaltimento negli strati superficiali del suolo

Come detto in precedenza è stato previsto lo smaltimento negli strati superficiali del suolo delle acque meteoriche.

Tale bacino è stato individuato, a differenza di quanto previsto nel progetto definitivo, in un'area depressa posta ad ovest del capannone di trattamenti dei rifiuti provenienti dalla raccolta differenziata. In particolare la posizione e la forma del bacino è stata definita in modo da garantire le seguenti distanze di rispetto:

- 30 m dalla proiezione al suolo della linea elettrica aerea ad alta tensione posta a nord della discarica;
- 15 m dalla proiezione al suolo della linea elettrica aerea a bassa tensione;
- 15 m dall'esistente pozzo P3V:
- 10 m dalla recinzione esistente.

Al fine di garantire sempre la funzionalità dell'intera opera e, quindi, la sicurezza idraulica della discarica, il sistema di smaltimento delle acque meteoriche è stato dimensionato per poter laminare e garantire l'infiltrazione di portate meteoriche caratterizzate da **tempi di ritorno Tr = 20 anni**. Inoltre è stato verificato il comportamento e l'affidabilità dell'intero sistema con portate caratterizzate da tempi di ritorno differenti, variabili tra 5 e 200 anni.

È stato quindi previsto un sistema di smaltimento composto da un **bacino di laminazione/dispersione** realizzato in terra e composto da:

- scarpate con pendenza 1:4 (tali da permettere un agevole accesso al fondo vasca) ed altezza massima di 1 m
- fondo di estensione pari a circa 5.800 mq, costituito da
 - vespaio di altezza 50 cm realizzato con pietrame rinveniente dalle attività di scavo;
 - approfondimento del fondo in corrispondenza degli alberi da reimpiantare di dimensioni 2x2x0,5 m in modo che la zolla di terreno vegetale per la messa a dimora sia di 2x2x1m;
 - ulteriore strato di terreno vegetale di altezza 30 cm in corrispondenza degli alberi ripiantati.
- altezza massima di invaso pari ad 1,50 m, al quale corrisponde un volume massimo di invaso pari a circa 8.700 mc
- n.20 perforazioni disperdenti realizzate mediante trivellazione di diametro 150 mm e profondità 20 m.

Il dimensionamento / verifica dell'intero sistema si è basato sull'<u>equazione di continuità</u> per cui in ogni istante il volume di laminazione V(t) è pari alla differenza fra il volume di acqua che entra nel vespaio e quello smaltito tramite la permeabilità del terreno sino a quell'istante, ossia:

$$V(t) = V_{affl}(t) - Q_{dispersa} \times t \qquad (1)$$

Dove

V(t) volume di laminazione nell'istante t (mc)

V_{affl}(t) volume che affluisce al sistema disperdente nell'istante t, il quale è funzione del bacino scolante e delle curve di possibilità climatiche relative al Tr=20 anni (mc)

Q dispersa la portata che si disperde attraverso l'intero sistema (mc/sec)

imponendo per Q _{dispersa} la somma della portata smaltibile dalla superficie inferiore del bacino di laminazione/dispersione e della portata smaltibile attraverso i pozzi perdenti.

E ponendo:

$$V_{aff}(t) = \Phi \times A \times h - V_0 + V_{sol}$$

dove

Φ = coefficiente di afflusso relativo all'intero bacino (imposto pari a 0,85)

A = superficie dell'area scolante (ha)

h = altezza di pioggia data da atⁿ dove a ed n sono relativi alle curve per Tr=20 anni

V₀ = la somma del volume invasato nella rete di fognatura, del volume degli invasi superficiali e del volume invasato nella vasca di accumulo delle acque di pioggia, ovvero la somma di:

- volume invasato nella rete di fognatura posto, in via precauzionale, pari a 0 mc
- volume invasato dagli "invasi superficiali" posto pari a 0 mc in quanto le coperture non presentano avvallamenti che possano determinare degli invasi superficiali;
- volume invasato dal velo idrico superficiale assunto pari a 5 mc/ha, pari ad un velo idrico di 0,5 mm.

V_{soll} = volume dato, all'istante t, dalla portata sollevata dagli impianti di sollevamento relativi alla copertura del III lotto e alle n.3 vasche di accumulo poste a fondo cava.

Per quanto riguarda il volume sollevato, si è ipotizzato (in maniera del tutto precauzionale) che l'impianto possa attivarsi all'istante 0 con la portata massima che, stando a quanto detto in precedenza corrisponde alla portata massima dell'impianto n.1, dell'impianto n.2 (o dell'impianto n.3) e dell'impianto di sollevamento posto sulla copertura del III lotto.

La valutazione della portata che si disperde attraverso il fondo della vasca di dispersione è stata effettuata utilizzando la legge di Darcy:

$$Q_{dispersa} = k \times j \times A_f$$

dove:

Q_{dispersa} = la portata d'infiltrazione (mc/sec);

k = il coefficiente di permeabilità (m/s);

J = la cadente piezometrica (m/m). Valutata pari a 1 in quanto il tirante idrico della superficie filtrante è trascurabile rispetto all'altezza dello strato filtrante e la superficie piezometrica della falda è convenientemente al di sotto del fondo disperdente;

A_f = la superficie netta d'infiltrazione (mq).

Per quanto concerne la definizione del coefficiente di permeabilità k, è d'uopo notare che, anche se ipotizzato omogeneo ed isotropo, il suolo ha caratteristiche che variano (alle volte notevolmente) in base alla profondità.

Dal progetto Definitivo si desume che "Le prove di permeabilità svolte in loco ... hanno riportato i seguenti valori:

- $K = 1.87 \times 10^{-4}$ m/s ad una profondità di 10 metri;
- $K = 1,02 \times 10^{-3}$ m/s ad una profondità di 6 metri."

In fase di progetto esecutivo sono state effettuate ulteriori indagini in sito volte ad approfondire il valore di permeabilità dell'area in questione. In particolare sono state effettuate prove sia a carico variabile che a carico costante in scavi esplorativi ed in sondaggi.

Dall'analisi di tali prove e tenendo un congruo fattore di sicurezza, si è assunto un valore del **coefficiente di permeabilità pari a 1 x 10**-5 **m/sec** (molto più prudente del valore imposto nel progetto definitivo).

Per quanto riguarda la capacità di dispersione dei pozzi, tenuto conto dell'elevato coefficiente di permeabilità che si riscontra a profondità maggiori di 10 m (circa 1 x 10⁻³ m/sec) dati dall'elevato grado di fessurazione dell'ammasso roccioso.

Imponendo l'equazione di continuità in funzione del tempo t, ed imponendo le curve di possibilità climatica relative a 20 anni, è stato progettato il bacino di laminazione/dispersione che, con un riempimento di soli 7 cm garantisce un volume di laminazione tale da permettere la dispersione delle portate meteoriche in 900 minuti (circa 15 ore).

La presenza degli alberi all'interno del bacino di laminazione è stata valutata riducendo la superficie filtrante da 5.800mg a 5.500 mg.

3.3.3 Verifica del sistema di smaltimento

Una volta effettuato il dimensionamento del bacino, si è proceduto con la verifica del sistema di smaltimento per portate caratterizzate da tempi di ritorno variabili tra 5 e 200 anni.

Di seguito si riporta una tabella riassuntiva dalla quale si evince che l'intero sistema di dispersione risulta essere valido anche per Tr=200 anni.

Tempo di ritorno [anni]	Superficie drenante bacino [mq]	Volume utile bacino [mc]	Volume minimo di laminazione [mc]	Tempo di riempimento [min]	Tempo di svuotamento [min]	Altezza velo idrico massimo [m]
5	5.500	5.500	521,39	50	360	0,10
10	5.500	5.500	675,39	60	450	0,13
15	5.500	5.500	765,97	75	510	0,14
20	5.500	5.500	830,48	75	555	0,16
25	5.500	5.500	880,97	90	585	0,16
50	5.500	5.500	1.040,75	105	690	0,19
200	5.500	5.500	1.373,33	135	900	0,25

3.3.4 Connessione tra manufatto di trattamento e sistema di smaltimento

La connessione tra l'impianto di trattamento delle acque meteoriche ed il bacino di laminazione / dispersione verrà realizzato mediante:

- una condotta in c.a. del DN800 in uscita dall'impianto di trattamento, posata con pendenza del 2%.
 L'attraversamento della viabilità attigua al I lotto di discarica sarà effettuato con la medesima condotta;
- Tratto terminale costituito da un canale a cielo aperto con fondo rivestito con pietrame sciolto.

Di seguito si riportano le scale di deflusso desunte con la formula di Chézy imponendo i seguenti coefficienti di scabrezza di Bazin

 γ = 0,23 per condotte in calcestruzzo

 γ = 0,85 per il canale a cielo aperto

ed utilizzando come portata di progetto la somma tra la portata con Tr=5 anni che perviene dalla sommità dei lotti I e II ed il massimo valore di portata che può essere sollevato in contemporaneo (694 l/sec + 4x50 l/sec = 894 l/sec).

Altezza di	angolo	Sezione	Contorno	Raggio	Velocità	Portata
riempimento	al centro	liquida	bagnato	idraulico		
mm.		mq.	m.	m.	m/sec.	lt/sec.
50	5,27	0,01308	0,404	0,032	0,97	12,70
100	4,84	0,03626	0,578	0,063	1,61	58,25
150	4,49	0,06524	0,717	0,091	2,11	137,46
200	4,19	0,09827	0,838	0,117	2,52	247,73
250	3,91	0,13420	0,949	0,141	2,87	385,25
300	3,65	0,17217	1,054	0,163	3,17	545,46
350	3,39	0,21143	1,156	0,183	3,42	723,30
400	3,14	0,25133	1,257	0,200	3,63	913,23
450	2,89	0,29122	1,357	0,215	3,81	1109,26
500	2,64	0,33049	1,459	0,227	3,95	1304,86
550	2,37	0,36845	1,564	0,236	4,05	1492,80
600	2,09	0,40439	1,676	0,241	4,12	1664,85
650	1,79	0,43741	1,797	0,243	4,14	1811,12
700	1,45	0,46639	1,935	0,241	4,11	1918,38
750	1,01	0,48957	2,109	0,232	4,01	1964,43
800	0,00	0,50265	2,513	0,200	3,63	1826,45

Scala di deflusso condotta circolare DN800 in calcestruzzo con pendenza i=2%

Altezza di riempimento	Sezione liquida	Contorno bagnato	Raggio idraulico	Velocità	Portata
m.	mq.	m.	m.	m/sec.	mc/sec.
0,05	0,08	1,64	0,047	0,27	0,02
0,10	0,16	1,78	0,090	0,48	0,08
0,15	0,25	1,92	0,129	0,65	0,16
0,20	0,34	2,07	0,165	0,81	0,27
0,25	0,44	2,21	0,198	0,94	0,41
0,30	0,54	2,35	0,230	1,06	0,57
0,35	0,65	2,49	0,260	1,18	0,76
0,40	0,76	2,63	0,289	1,28	0,97
0,45	0,88	2,77	0,316	1,38	1,21
0,50	1,00	2,91	0,343	1,47	1,47
0,55	1,13	3,06	0,369	1,56	1,76
0,60	1,26	3,20	0,394	1,64	2,07
0,65	1,40	3,34	0,419	1,72	2,40
0,70	1,54	3,48	0,443	1,80	2,77
0,80	1,84	3,76	0,489	1,94	3,57

Scala di deflusso canale a cielo aperto rivestito in pietrame. Sezione trapezioidale con larghezza fondo L=1,50~m, scarpate 1/1~e con pendenza i=0,5%

4 IMPIANTI DI SOLLEVAMENTO ACQUE METEORICHE

Dai calcoli idraulici effettuati per definire la portata meteorica ed il volume di pioggia di progetto è emerso che le opere di accumulo temporaneo delle acque meteoriche sono tali da permetterne lo svuotamento al termine dell'evento meteorico.

La scelta della portata da sollevare è stata effettuata definendo, per un determinato volume di pioggia, un tempo di svuotamento compatibile con la normativa e con il recapito finale. In particolare, per gli eventi meteorici caratterizzati da tempo di ritorno Tr = 5 anni, si prevede di sollevare 50 l/sec.

Al fine di garantire la funzionalità dell'impianto di sollevamento, si è previsto di installare, per ciascun impianto, n.2 elettropompe sommergibili da 50 l/sec (una titolare ed una di riserva). Tali elettropompe verranno attivate in maniera alternata in modo da ridurre i rischi di blocco.

Di seguito verrà effettuata la verifica di ciascun impianto di sollevamento prevedendo il funzionamento di una singola elettropompa (50 l/sec).

4.1 DEFINIZIONE DELLE PERDITE DI CARICO

Per la valutazione delle perdite di carico nelle tubazioni è stato eseguito utilizzando formule comunemente usate in campo idraulico.

4.1.1 Perdite di carico distribuite nelle correnti in pressione

Definita la portata di progetto e la geometria della rete, è stato verificato il tronco valutando le perdite di carico distribuite e concentrate. La verifica della condotta ed il calcolo della perdita di carico (cadente) sono effettuati utilizzando le seguenti formule:

$$\Delta h = \frac{\lambda}{D} \cdot \frac{V^2}{2x9.81} \cdot L$$

ove:

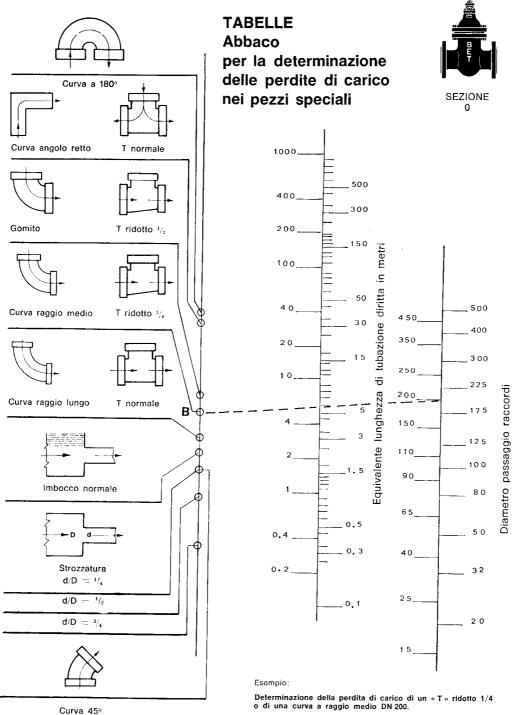
$$V = \text{velocità} = \frac{Q}{3.14 \cdot D^2} (m/s)$$

Q = portata (mc/s)

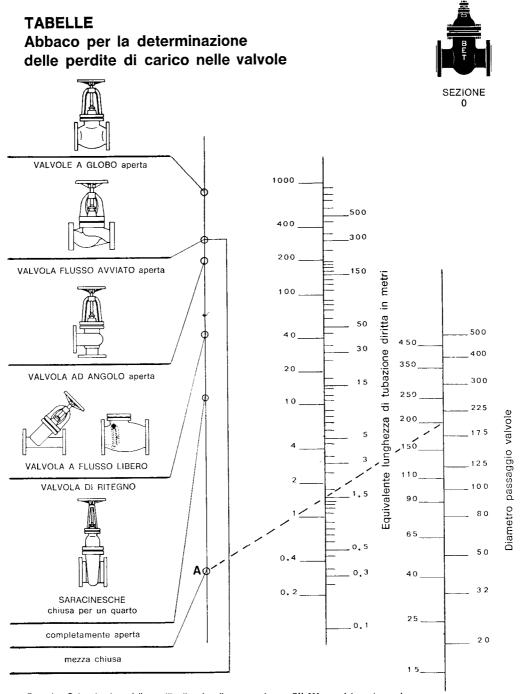
D = diametro (m)

$$\lambda = \text{fattore di rugosità (Colebrook)} = \left(\frac{1}{2 \cdot \lg \frac{3,71 \cdot D}{\epsilon}}\right)^2 \cdot \left(1 + \frac{8D}{\text{Re} \cdot \epsilon}\right)$$

 ε = rugosità


Re = numero di Reynolds =
$$\frac{V \cdot D}{a}$$

a = viscosità cinematica = 1,14 X 10^{-6} m²/s (per acqua a 15° C)


 Δh = perdita di carico (m di H₂O)

4.1.2 Perdite di carico localizzate

Le perdite di carico localizzate dovute a saracinesche, curve, valvole di ritegno, ecc. sono state assimilate a perdite di carico distribuite calcolando la lunghezza equivalente data dai grafici allegati.

Tracciare una retta che congiunga il punto « B » corrispondente al « T » ridotto,col diametro 200 indicato nella terza colonna — il punto d'intersezione con la colonna centrale da la perdita di carico, che in questo caso risulta di circa 6 metri di tubazione dal diametro 200 mm.

Esempio: Determinazione della perdita di carico di una saracinesca DN 200 completamente aperta.

Tracciare una retta che congiunga il punto «A» corrispondente alla saracinesca aperta col diametro 200 indicato nella terza colonna — il punto di intersezione con la colonna centrale dà la perdita di carico — che in questo caso risulta di metri 1,5 di tubazione dal diametro di 200 mm.

4.2 IMPIANTO DI SOLLEVAMENTO ACQUE SOMMITALI III LOTTO

Nota la portata da sollevare e la geometria del tracciato, di seguito si riporta il calcolo delle perdite di carico.

Dati:

Portata da sollevare: 50 l/sec (180 mc/h)

Tratto 1

Diametro premente pompa: DN 150

Lunghezza premente: 16 m

1,03 m

Scabrezza 0,10 mm (valutata a tubi usati)

Velocità2,49 m/secNumero di Reynolds (RE)349473,68Coefficiente resistenza (Colebrook) Lambda:0,03261920

Apparecchiature e pezzi speciali:

Perdita di carico distribuita

curve a raggio lungo n.8 (lunghezza equivalente 8x3,5=28 m)

Tee n.1 (lunghezza equivalente 1x9=9 m)
Saracinesca n.1 (lunghezza equivalente 1x1=1 m)

Perdita di carico localizzata 2,92 m

Tratto 2

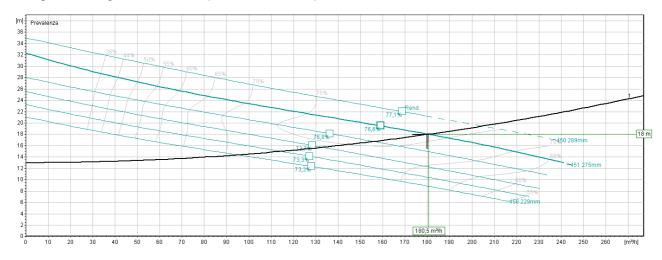
Diametro collettore: De280 (in Polietilene)

Lunghezza collettore: 240 m

Scabrezza 0,080 mm (valutata a tubi usati)

Velocità0,89 m/secNumero di Reynolds (RE)209.228,07Coefficiente resistenza (Colebrook) Lambda:0,02644292

Perdita di carico distribuita 0,96 m


Apparecchiature e pezzi speciali:

curve a raggio lungo n.8 (lunghezza equivalente 8x7=56 m)

Perdita di carico localizzata 0,28 m
Perdita complessiva 5,19 m

Considerando una geodetica di 13,00 m, l'impianto di sollevamento avrà una prevalenza, al punto di lavoro di 180 mc/h, di 18,20 m.

Di seguito si allega la curva delle prestazioni dell'impianto

4.3 IMPIANTO DI SOLLEVAMENTO ACQUE FONDO CAVA

Dati:

Portata da sollevare: 50 l/sec (180 mc/h)

Tratto 1

Diametro premente pompa: DN 150
Lunghezza premente: 15 m

Scabrezza 0,10 mm (valutata a tubi usati)

Velocità2,49 m/secNumero di Reynolds (RE)349.473,68Coefficiente resistenza (Colebrook) Lambda:0,03261920

Perdita di carico distribuita 0,97 m

Apparecchiature e pezzi speciali:

curve a raggio lungo n.5 (lunghezza equivalente 5x3,5=17,5 m)

Tee n.1 (lunghezza equivalente 1x9=9 m)
Saracinesca n.1 (lunghezza equivalente 1x1=1 m)

Perdita di carico localizzata 2,27 m

Tratto 2

Diametro collettore: De240 (in Polietilene)

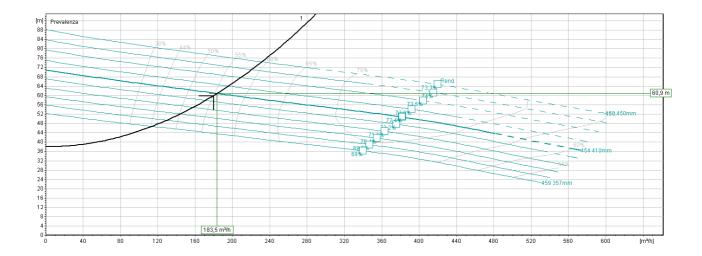
Lunghezza collettore: 750 m

Scabrezza 0,080 mm (valutata a tubi usati)

Velocità0,89 m/secNumero di Reynolds (RE)209.228,07Coefficiente resistenza (Colebrook) Lambda:0,02644292

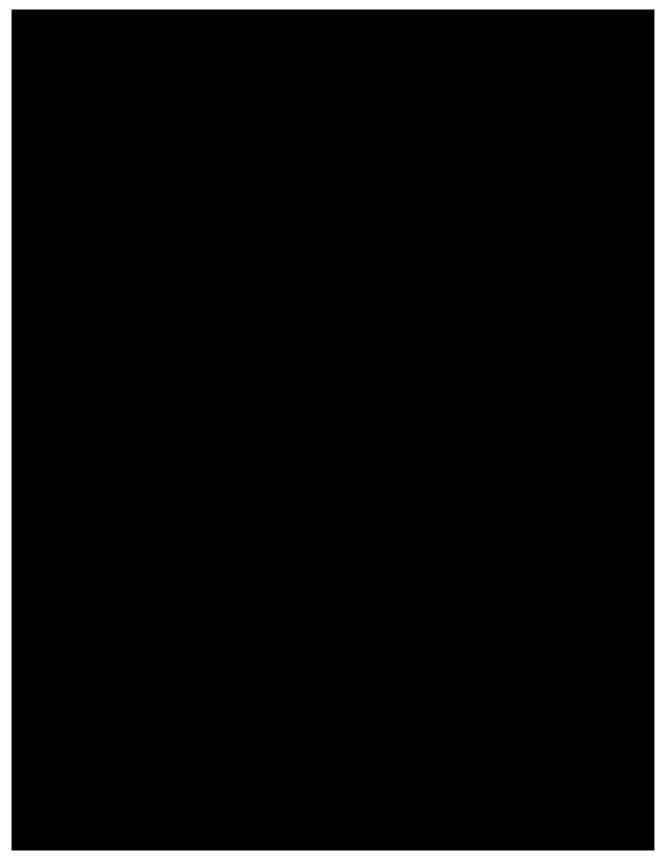
Apparecchiature e pezzi speciali:

Perdita di carico distribuita


curve a raggio lungo n.10 (lunghezza equivalente 10x7=70 m)

Perdita di carico localizzata 0,31 m
Perdita complessiva 6,54 m

Considerando una geodetica di 40 m, l'impianto di sollevamento avrà una prevalenza, al punto di lavoro di 180 mc/h, di 46,54 m.


2,99 m

Di seguito si allega la curva delle prestazioni dell'impianto

5 ALLEGATI

5.1 DATI PLUVIOMETRICI DELLA STAZIONE DI ANDRIA

5.2 PIOGGE INFERIORI ALL'ORA: DEFINIZIONE DELLE ALTEZZE

5.2 PIOGGE INFERIORI ALL ORA. DEFINIZIONE DELLE ALTEZ									
Alt	Altezze ragguagliate in base alle piogge di durata 1 ora Formula di Bell								
Anno	5 min	10 min	15 min	20 min	30 min	45 min			
1959	5,20	10,40	15,60	20,80	20,80	23,00			
1963	11,00	13,90	16,99	19,39	23,07	27,14			
1965	4,40	8,80	13,20	13,20	15,28	17,97			
1966 1967	4,10 4,97	8,20 9,93	9,45 14,90	10,78 19,87	12,83 29,80	15,10 29,80			
1968	6,93	13,87	20,80	20,80	20,80	20,80			
1969	4,10	8,20	10,69	12,20	14,51	17,07			
1970	6,50	13,00	19,50	26,00	26,12	30,73			
1971	10,15	15,19	18,57	21,18	25,20	29,65			
1972	6,80	13,60	15,76	17,97	21,39	25,16			
1973	4,90	9,80	14,70	19,60	19,60	19,60			
1974	1,88	3,76	5,64	7,52	10,69	12,58			
1975	3,28	6,55	9,83	13,10	19,65	26,20			
1976	4,53	9,07	13,60	13,60	14,36	16,89			
1977	7,90	15,80	23,70	31,60	47,40	47,40			
1978 1979	5,29 4,00	7,92 8,00	9,68 12,00	11,04 12,00	13,14 12,00	15,46 12,00			
1979	10,40	20,80	20,80	20,80	23,83	28,04			
1981	5,20	10,40	15,60	15,60	15,60	15,60			
1982	7,50	15,00	22,50	30,00	44,76	52,66			
1983	3,10	6,20	9,30	12,40	16,50	19,41			
1984	0,00	0,00	0,00	0,00	0,00	0,00			
1985	0,00	0,00	0,00	0,00	0,00	0,00			
1986	5,97	8,93	10,92	12,45	14,82	17,43			
1987	10,42	20,83	25,00	25,00	25,00	25,00			
1988	0,00	0,00	0,00	0,00	0,00	0,00			
1989	0,00	0,00	0,00	0,00	0,00	0,00			
1990 1991	4,40 10,80	8,80 10,80	8,80 13,05	8,80 14,89	10,08 17,72	11,86 20,85			
1992	0,00	0,00	0,00	0,00	0,00	0,00			
1993	3,33	6,67	10,00	13,33	20,00	29,29			
1994	2,33	4,67	7,00	9,33	14,00	17,43			
1995	7,53	15,07	22,60	22,60	22,60	23,18			
	4,23	8,47	12,70	16,93	25,40	25,40			
1996	3,27	6,53	9,80	10,78	12,83	15,10			
4007	2,17	4,33	6,50	8,67	13,00	13,00			
1997	5,40 3,07	10,80 6,13	16,20 9,20	18,87 12,27	22,46 18,40	26,42 18,40			
1998	10,80	15,19	18,57	21,18	25,20	29,65			
1000	8,87	17,73	26,60	26,60	26,60	26,60			
	5,30	10,60	15,90	21,20	31,80	31,80			
1999	8,80	21,36	26,11	29,79	35,44	41,70			
	7,80	15,60	23,40	23,40	23,40	23,40			
	5,00	10,00	15,00	20,00	30,00	30,00			
2000	10,00	11,05	13,51	15,41	18,33	21,57			
	7,07	14,13	21,20	21,20	21,20	21,20			
2001	3,90	7,80	11,70 5,40	15,60 6,16	23,40 7,33	23,40 8,63			
2001	5,00 2,47	5,00 4,93	7,40	7,40	7,33	7,40			
	1,47	2,93	4,40	5,87	8,80	8,80			
2002	10,20	10,49	12,83	14,64	17,41	20,49			
	5,93	11,87	17,80	17,80	17,80	17,80			
	3,40	6,80	10,20	13,60	20,40	20,40			
2003	4,60	7,55	9,23	10,53	12,53	14,74			
	2,73	5,47	8,20	8,20	8,20	8,20			
	2,00	4,00	6,00	8,00	12,00	12,00			
2004	7,00	8,28	10,13	11,56	13,75	16,17			
	3,87	7,73	11,60	11,60	11,60	11,60			
2005	2,60 8,80	5,20 12,61	7,80 15,42	10,40 17.59	15,60 20,93	15,60 24,62			
2000	5,80	11,60	17,40	17,59 17,40	20,93 17,40	17,40			
	5,00	11,00	17,40	17,40	17,40	17,70			

Altezze ragguagliate in base alle piogge di durata 1 ora Formula di Bell								
	0,00	0,00	0,00	0,00	0,00	0,00		
	4,03	8,07	12,10	16,13	24,20	24,20		
2006	0,00	0,00	0,00	0,00	0,00	0,00		
2007	6,00	6,00	7,32	8,35	9,93	11,68		
	3,87	7,73	11,60	11,60	11,60	11,60		
	2,10	4,20	6,30	8,40	12,60	12,60		
2008	9,00	9,00	10,80	12,33	14,66	17,25		
	5,47	10,93	16,40	16,40	16,40	16,40		
	2,97	5,93	8,90	11,87	17,80	17,80		
2009	7,40	10,31	12,60	14,38	17,11	20,13		
	4,07	8,13	12,20	12,20	12,20	12,20		
	2,43	4,87	7,30	9,73	14,60	14,60		
2010	8,20	8,20	8,44	9,63	11,46	13,48		
	4,40	8,80	13,20	13,20	13,20	13,20		
	2,40	4,80	7,20	9,60	14,40	14,40		
2011	8,20	25,04	30,61	34,92	41,55	48,88		
	6,33	12,67	19,00	19,00	19,00	19,00		
	5,07	10,13	15,20	20,27	30,40	30,40		
2012	10,80	12,52	15,31	17,46	20,78	24,44		
	8,00	16,00	24,00	24,00	24,00	24,00		
	2,25	4,50	6,75	9,00	13,50	13,50		

5.3 ELABORAZIONE DATI PLUVIOMETRICI - STAZIONE DI ANDRIA (5MIN – 1H)

									NUMERO	OSSER	RVAZIONI	
	ANNO	5 min	10 min	15 min	30 min	60 min		5 min			30 min	
-	4050					25.00	0					0
	1959	5,20 11,00	10,40 13,90	15,60	20,80 23,07	25,60 30,20		3		5		5
	1963 1965	4.40	8,80	16,99 13,20	15,28	20.00		8		6		6
	1966	4,10	8,20	9,45	12,83	16,80		2	3	4		3
	1967							2	3	2		2
	1968	4,97 6,93	9,93 13,87	14,90 20,80	29,80 20,80	31,80 21,00		3	4	5	7	7
	1969	4,10	8,20	10,69	14,51	19,00		5	7	7	5	4
	1970	6,50	13,00	19,50	26,12	34,20		2	3	2		3
	1971	10,15	15,19	18,57	25,20	33,00		5	6	7		7
	1972	6,80	13,60	15,76	21,39	28,00		8		6		7
	1973	4,90	9,80	14,70	19,60	21,00		5	6	5		6
	1974	1,88	3,76	5,64	10,69	14,00		3		5	5	4
	1975	3,28	6,55	9,83	19,65	26,20		1		1		1
	1976	4,53	9,07	13,60	14,36	18,80		2		2		5 3
	1977	7,90	15,80	23,70	47,40	49,60		6		8		8
	1978	5.29	7,92	9,68	13,14	17.20		3		2		2
	1979	4,00	8,00	12,00	12,00	12,20		2	2	3		1
	1980	10,40	20,80	20,80	23,83	31,20		8	8	7		7
	1981	5,20	10,40	15,60	15,60	16,00		3		5		2
	1982	7,50	15,00	22,50	44,76	58,60		6		8		8
	1983	3,10	6,20	9,30	16,50	21,60		1		1		4
	1986	5,97	8,93	10,92	14,82	19.40		4		2		3
	1987	10,42	20,83	25,00	25,00	26,60		8		8		6
	1990	4,40	8,80	8,80	10,08	13,20		2		1		1
	1991	10,80	10,80	13,05	17,72	23,20		8		4		4
	1993	3,33	6,67	10,00	20,00	32,60		1		2	5	7
	1994	2,33	4,67	7,00	14,00	19,40		1	1	1		3
	1995	7,53	15,07	22,60	25,40	25,80		6		8		5
	1996	3,27	6,53	9,80	13,00	16,80		1		2		2
	1997	5,40	10,80	16,20	22,46	29,40		3		5		6
	1998	10,80	17,73	26,60	31,80	33,00		8		8		7
	1999	8,80	21,36	26,11	35,44	46,40		7		8		8
	2000	10,00	14,13	21,20	23,40	24,00		8		7		5
	2001	5,00	5,00	7,40	8,80	9,60		3	1	1		1
	2002	10,20	11,87	17,80	20,40	22,80		8	5	6		4
	2003	4,60	7,55	9,23	12,53	16,40		2	2	1		2
	2004	7,00	8,28	11,60	15,60	18,00		6	3	3		3
	2005	8,80	12,61	17,40	24,20	27,40		7		6		6 1
	2007	6,00	7,73	11,60	12,60	13,00						
	2008	9,00	10,93	16,40	17,80	19,20		7		6		3 4
	2009	7,40	10,31	12,60	17,11	22,40		7		4	-	2
	2010	8,20	8,80	13,20	14,40	15,00		7		8		8
	2011	8,20	25,04	30,61	41,55	54,40		8		8		6
	2012	10,80	16,00	24,00	24,00	27,20			,			
						5 min	10 m	in 15	min 3	00 min	60 min	
				111	m(h)	6.60	11	34	15.50	20.67	25.03	

		5 min	10 min	15 min	30 min	60 min
111	m(h)	6,60	11,34	15,50	20,67	25,03
111	s(h)	2,62	4,71	5,95	8,74	10,70
111	a(h)	0,4897	0,2723	0,2155	0,1468	0,1199
111	u(h)	5,42	9,22	12,82	16,74	20,21
	Tr = 5 anni	8,48	14,73	19,78	26,95	32,73
	Tr = 10 anni	10,02	17,48	23,26	32,07	38,99
	Tr = 15 anni	10,88	19,04	25,23	34,95	42,52
	Tr = 20 anni	11,49	20,12	26,60	36,97	44,99
	Tr = 25 anni	11,95	20,96	27,66	38,52	46,90
	Tr = 50 anni	13,39	23,55	30,93	43,31	52,77
	Tr = 200 anni	16,24	28,67	37,39	52,81	64,40

m(h) = media dei valori rispetto alla durata dell'evento

s(h) = scarto quadratico medio

a(h) = variabile della distribuzione di Gumbel u(h) = variabile della distribuzione di Gumbel

N = Numero di eventi

K = Numero di calssi di appartenenza

Ni = Frequenza dei valori empirici

f = Numero di gradi di libertà

N =	44	K =	8	Npi =	5,5	f =	7	
Classi	P(i)	P(hi+1)	U(i+1)	5 min h(i+1)	10 min h(i+1)	15 min h(i+1)	30 min h(i+1)	60 min h(i+1)
1	0,1250	0,13	-0,732	3,93	6,53	9,42	11,75	14,10
2	0,1250	0,25	-0,327	4,75	8,02	11,30	14,51	17,49
3	0,1250	0,38	0,019	5,46	9,29	12,91	16,87	20,37
4	0,1250	0,50	0,367	6,17	10,56	14,52	19,23	23,27
5	0,1250	0,63	0,755	6,96	11,99	16,32	21,88	26,51
6	0,1250	0,75	1,246	7,96	13,79	18,60	25,22	30,61
7	0,1250	0,88	2,013	9,53	16,61	22,16	30,45	37,01
8	0,1250	1,00	00	00	00	00	00	00

		F	REQUEN	ZE		
Classi	5 min	10 min	15 min	30 min	60 min	
1	6	4	6	3	5	
2	7	7	7	10	6	
3	7	8	4	5	7	
4	2	5	4	3	6	
5	3	4	6	7	4	
6	5	3	5	8	6	
7	5	8	4	3	6	
8	9	5	8	5	4	
 X ²	6,55	4.73	2,91	8,73	1,45	
-	5,00	.,,,,	_,	-,, -	.,	
X°2	14.07					

CURVE INTERPOLATRICI (5 - 60)

Tr = 5 anni	a = 36,77	n = 0,539
Tr = 10 anni	a = 43,77	n = 0,543
Tr = 15 anni	a = 47,72	n = 0,545
Tr = 20 anni	a = 50,49	n = 0,546
Tr = 25 anni	a = 52,62	n = 0,546
Tr = 50 anni	a = 59,18	n = 0,548
Tr = 200 anni	a = 72,18	n = 0,551

5.4 ELABORAZIONE DATI PLUVIOMETRICI - STAZIONE DI ANDRIA (1H – 24H)

								NUMERO	O OSSER	/AZIONI		
							60 min				1.440 min	
ANNO	60 min	180 min	360 min	720 min	1.440 min	0						0
1959	25.60	25,80	36,20	54,00	82.80		5	3	4	5	7	
1963	30,20	34,40	34,40	35,00	50.00		6	5	3	2	3	
1965	20,00	32,80	43,60	61,00	92,20		3	5	5	6	8	
1966	16,80	21.00	21,00	25,40	32,40		2	2	1	1	1	
1967	31,80	31,80	31,80	35,20	43,80		7	4	3	2	2	
1968	21.00	25.80	27,40	29.00	38,20		4	3	2	1	1	
1969	19,00	21,40	30,60	32,20	38,80		3	2	3	2	2	
1970	34.20	55.00	72,60	98.80	118.40		7	8	8	8	8	
1971	33,00	58,40	77,00	81,00	107,80		7	8	8	8	8	
1972	28,00	46.60	59,20	79,80	91,60		6	7	7	8	8	
1973	21,00	30,40	30,60	44,20	45,20		4	4	3	4	2	
1974	14.00	21,40	29,40	35.40	35.40		1	2	2	2	1	
1975	26,20	26,20	39,20	55,20	74,00		5	3	4	6	6	
1976	18,80	29,80	38,80	51,60	83,20		3	4	4	5	7	
1977	49,60	51,40	57,80	66,80	77,20		8	7	7	7	7	
1978	17,20	30,60	45,80	45,80	45,80		2	4	6	4	2	
1979	12,20	20,20	22,60	30,20	47,20		1	2	1	1	3	
1980	31,20	31,40	31,40	40,00	47,60		7	4	3	3	3	
1981	16,00	20,00	24,80	33,20	39,40		2	2	2	2	2	
1982	58,60	66,20	66,20	66,60	68,00		8	8	8	7	6	
1983	21,60	40,00	54,80	54,80	67,00		4	6	7	6	6	
1986	19,40	19,40	23,40	36,40	38,00		3	2	1	2	1	
1987	26,60	27,00	33,20	51,60	73,00		6	3	3	5	6	
1990	13,20	22,20	29,20	41,40	56,20		1	2	2	3	4	
1991	23,20	23,40	28,00	29,60	38,20		4	3	2	1	1	
1993	32,60	42,60	45,60	45,60	49,60		7	6	6	4	3	
1994	19,40	26,60	35,40	50,00	53,40		3	3	4	5	4	
1995	25,80	26,00	26,00	28,40	37,00		5	3	2	1	1	
1996	16,80	20,20	29,60	42,60	44,20		2	2	3	3	2	
1997	29,40	65,20	74,60	75,00	81,60		6	8	8	8	7	
1998	33,00	48,00	48,00	48,00	50,80		7	7	6	4	3	
1999	46,40	76,00	88,00	113,60	118,00		8	8	8	8	8	
2000	24,00	24,20	30,20	33,00	35,40		5	3	3	2	1	
2001	9,60	17,40	28,60	42,80	51,80		1	1	2	4	3	
2002	22,80	47,20	62,20	78,00	88,00		4	7	7	8	7	
2003	16,40	31,40	48,60	63,80	79,20		2	4	6	7	7	
2004	18,00	23,80	39,40	43,60	55,60		3	3	4	4	4	
2005	27,40	33,60	34,20	53,40	80,60		6	5	3	5	7	
2007	13,00	22,80	31,60	40,60	43,60		1	2	3	3	2	
2008	19,20	22,60	31,20	38,60	48,20		3	2	3	3	3	
2009	22,40	42,80	64,80	70,80	76,80		4	6	8	7	7	
2010	15,00	23,40	38,40	53,20	95,40		2	3	4	5	8	
2011 2012	54,40	94,60	103,00 29,00	103,00 34,20	103,20 45,80		8	8	8	8	8	
2012	27,20	28,60	29,00	34,20	45,00		6	4	2	2	2	

		60 min	180 min	360 min	720 min	1.440 min
III	m(h)	25,03	34,76	42,67	51,65	62,95
III	s(h)	10,70	16,72	18,75	20,61	23,88
III	a(h)	0,1199	0,0767	0,0684	0,0623	0,0537
III	u(h)	20,21	27,24	34,23	42,37	52,20
	Tr = 5 anni	32,73	46,79	56,16	66,47	80,12
	Tr = 10 anni	38,99	56,57	67,12	78,52	94,09
	Tr = 15 anni	42,52	62,09	73,31	85,32	101,97
	Tr = 20 anni	44,99	65,95	77,65	90,08	107,49
	Tr = 25 anni	46,90	68,93	80,98	93,75	111,74
	Tr = 50 anni	52,77	78,10	91,27	105,05	124,83
	Tr = 200 anni	64,40	96,26	111,64	127,43	150,78

m(h) = media dei valori rispetto alla durata dell'evento

s(h) = scarto quadratico medio

a(h) = variabile della distribuzione di Gumbel

u(h) = variabile della distribuzione di Gumbel

N = Numero di eventi

K = Numero di calssi di appartenenza

Ni = Frequenza dei valori empirici

f = Numero di gradi di libertà

N =	44	K =	8	Npi =	5,5	f =	7	
123 13	942939	12251015	1202000	60 min		360 min	720 min	1.440 min
Classi	P(i)	P(hi+1)	U(i+1)	h(i+1)	h(i+1)	h(i+1)	h(i+1)	h(i+1)
1	0,1250	0,13	-0,732	14,10	17,70	23,53	30,62	38,57
2	0,1250	0,25	-0,327	17,49	22,98	29,46	37,13	46,12
3	0,1250	0,38	0,019	20,37	27,49	34,51	42,69	52,56
4	0,1250	0,50	0,367	23,27	32,02	39,59	48,26	
5	0,1250	0,63	0,755	26,51	37,08	45,27	54,50	66,26
6	0,1250	0,75	1,246	30,61	43,48	52,44	62,39	75,39
7	0,1250	0,88	2,013	37,01	53,48	63,66	74,71	89,68
8	0,1250	1,00	00	00	00	00	00	00
							======	
				FF	REQUENZ	ZΕ		
		Classi	60 min				1.440 min	
			_			_	_	
		1	5	1	3	5	7	
		2	6	10	8	8	8	
		3	7	10	11	5	7	
		4	6	7	6	6	3	
		5	4	3	1	6	0	
		6	6	3	4	3	4	
		7	6	4	4	4	8	
		8	4	6	7	7	7	
		X^2	1,45	14,18	12,73	3,27	10,55	
		X°^2	14.07					

5.5 PROGETTO E VERIFICA DEL BACINO DI LAMINAZIONE E DISPERSIONE

5.5.1 Tempo di ritorno 5 anni

		e breve durata	Precipitaz	ioni orarie di durato	a 1÷24 ore
	a ₁ =	36,770	,	a ₂ =	33,520
I	n ₁ =	0,539		n ₂ =	0,278
	T _i =	0,702			0,2,
	"	0,702			
Superficie	e afferente A (ha)=	2,57			
	Coeff. di afflusso φ=	0,85			
	coli invasi (mc/ha)=	5		1 ((\)	1.005.07
	ato a monte (mc)=	0,00	· ·	m. terreno (m/sec)	1,00E-05
Portato	a sollevata (mc/s)=	0,200		sup drenante (mq)	5.500
	P. 1 P. 7 D				
	disperdenti (cad)=	20			
	per pozzo (l/sec)=	10,00	-11-	()	0.16
	persa pozzi (I/sec)=	200,00		ezza accumulo (m)	0,10
	rsa bacino (I/sec)=	55,00	Volun	me accumulo (mc)	550
	a dispersa (I/sec)=	255,00			
	aminazione (mc) =	521,39	volume ut	tile accumulo (mc)	550,00
stante di massimo ri		50			
Tempo di svi	uotamento (min)=	360			
	(ore)	6,00			
	(giorni)	0,25			
1000 MA 10 1000	Altezza di pioggia		Volume di afflusso	Volume deflusso	Volume invasato
Istante minuti	(mm)	per runoff	sollevato	(mc)	(mc)
		(mc)	(mc)	100	
0	0,00	0,00	0,00	0,00	0,00
10	13,99	292,69	120,00	153,00	259,69
20	20,33	431,23	240,00	306,00	365,23
30	25,30	539,80	360,00	459,00	440,80
40	29,55	632,58	480,00	612,00	500,58
50	31,86	683,21	600,00	765,00	518,21
60	33,52	719,39	720,00	918,00	521,39
70	34,99	751,46	840,00	1071,00	520,46
80	36,31	780,36	960,00	1224,00	516,36
90	37,52	806,76	1080,00	1377,00	509,76
100	38,63	831,13	1200,00	1530,00	501,13
110	39,67	853,79	1320,00	1683,00	490,79
120	40,64	875,01	1440,00	1836,00	479,01
130	41,56	894,98	1560,00	1989,00	465,98
140	42,42	913,88	1680,00	2142,00	451,88
150	43,24	931,83	1800,00	2295,00	436,83
160	44,03	948,93	1920,00	2448,00	420,93
170	44,78	965,28	2040,00	2601,00	404,28
180	45,49	980,94	2160,00	2754,00	386,94
190	46,18	995,99	2280,00	2907,00	368,99
200	46,85	1010,48	2400,00	3060,00	350,48
210	47,48	1024,46	2520,00	3213,00	331,46
220	48,10	1037,96	2640,00	3366,00	311,96
230	48,70	1051,02	2760,00	3519,00	292,02
240	49,28	1063,69	2880,00	3672,00	271,69
250	49,84	1075,97	3000,00	3825,00	250,97
260	50,39	1087,91	3120,00	3978,00	229,9
270	50,92	1099,52	3240,00	4131,00	208,5
280	51,44	1110,82	3360,00	4284,00	186,83
290	51,94	1121,84	3480,00	4437,00	164,8
300	52,43	1132,58	3600,00	4590,00	142,5
	52,91	1143,07	3720,00	4743,00	120,0
310		1153,32	3840,00	4896,00	97,3
310 320	53,38	1100.02			
320 330	53,84	1163,34	3960,00	5049,00	74,34
320					

5.5.2 Tempo di ritorno 10 anni

	i notevole intensità	e breve durata	Precipitaz	ioni orarie di durato	n 1÷24 ore
,	a ₁ =	43,770	,	a ₂ =	40,310
	n ₁ =	0,543		n ₂ =	0,272
	T _i =	0,738			, = -
Superfici	e afferente A (ha)=	2,57			
	Coeff. di afflusso φ=	0,85			
	coli invasi (mc/ha)=	5			
	ato a monte (mc)=	0,00	per	m. terreno (m/sec)	1,00E-05
	a sollevata (mc/s)=	0,200		sup drenante (ma)	5.500
n. pozzi	disperdenti (cad)=	20			
	per pozzo (l/sec)=	10,00			
Portata disp	persa pozzi (I/sec)=	200,00	alte	ezza accumulo (m)	0,13
Portata dispe	ersa bacino (I/sec)=	55,00	volun	ne accumulo (mc)	715
Portat	a dispersa (I/sec)=	255,00			
Volume di l	aminazione (mc) =	675,32	volume ut	tile accumulo (mc)	715,00
stante di massimo ri		60			
Tempo di sv	ruotamento (min)=	450			
	(ore)	7,50			
	(giorni)	0,31			
200 10 10 100	Altezza di pioggia		Volume di afflusso	Volume deflusso	Volume invasato
Istante minuti	(mm)	per runoff	sollevato	(mc)	(mc)
		(mc)	(mc)	100 C.	
0 15	0,00 20,62	0,00 437,56	0,00	0,00 229,50	0,00 388,06
30	30,04	643,40	180,00 360,00	459,00	544,40
45	37,28	801,44	540,00	688,50	652,94
60	40,31	867,72	720,00	918,00	669,72
75	42,83	922,82	900,00	1147,50	675,32
90	45,01	970,39	1080,00	1377,00	673,39
105	46,94	1012,50	1260,00	1606,50	666,00
120	10// 1	1012,00		1000,00	000,00
170	48.67	1050.42	1440.00	1836.00	654.42
	48,67 50.26	1050,42 1085.04	1440,00 1620.00	1836,00 2065.50	654,42 639.54
135	50,26	1085,04	1620,00	2065,50	639,54
135 150	50,26 51,72	1085,04 1116,96	1620,00 1800,00	2065,50 2295,00	639,54 621,96
135	50,26	1085,04	1620,00	2065,50	639,54 621,96 602,13
135 150 165	50,26 51,72 53,08	1085,04 1116,96 1146,63	1620,00 1800,00 1980,00	2065,50 2295,00 2524,50	639,54 621,96 602,13
135 150 165 180	50,26 51,72 53,08 54,35	1085,04 1116,96 1146,63 1174,40	1620,00 1800,00 1980,00 2160,00	2065,50 2295,00 2524,50 2754,00	639,54 621,96 602,13 580,40
135 150 165 180 195	50,26 51,72 53,08 54,35 55,55	1085,04 1116,96 1146,63 1174,40 1200,53	1620,00 1800,00 1980,00 2160,00 2340,00	2065,50 2295,00 2524,50 2754,00 2983,50	639,54 621,96 602,13 580,40 557,03
135 150 165 180 195 210	50,26 51,72 53,08 54,35 55,55 56,68	1085,04 1116,96 1146,63 1174,40 1200,53 1225,24	1620,00 1800,00 1980,00 2160,00 2340,00 2520,00	2065,50 2295,00 2524,50 2754,00 2983,50 3213,00	639,54 621,96 602,13 580,40 557,03 532,24 506,19
135 150 165 180 195 210 225	50,26 51,72 53,08 54,35 55,55 56,68 57,75	1085,04 1116,96 1146,63 1174,40 1200,53 1225,24 1248,69	1620,00 1800,00 1980,00 2160,00 2340,00 2520,00 2700,00	2065,50 2295,00 2524,50 2754,00 2983,50 3213,00 3442,50	639,54 621,96 602,13 580,40 557,03 532,24
135 150 165 180 195 210 225 240	50,26 51,72 53,08 54,35 55,55 56,68 57,75 58,77	1085,04 1116,96 1146,63 1174,40 1200,53 1225,24 1248,69 1271,03	1620,00 1800,00 1980,00 2160,00 2340,00 2520,00 2700,00 2880,00	2065,50 2295,00 2524,50 2754,00 2983,50 3213,00 3442,50 3672,00	639,54 621,96 602,13 580,40 557,03 532,24 506,19
135 150 165 180 195 210 225 240 255	50,26 51,72 53,08 54,35 55,55 56,68 57,75 58,77 59,75	1085,04 1116,96 1146,63 1174,40 1200,53 1225,24 1248,69 1271,03 1292,38	1620,00 1800,00 1980,00 2160,00 2340,00 2520,00 2700,00 2880,00 3060,00	2065,50 2295,00 2524,50 2754,00 2983,50 3213,00 3442,50 3672,00 3901,50	639,54 621,96 602,13 580,40 557,03 532,24 506,19 479,03 450,88 421,83
135 150 165 180 195 210 225 240 255 270	50,26 51,72 53,08 54,35 55,55 56,68 57,75 58,77 59,75	1085,04 1116,96 1146,63 1174,40 1200,53 1225,24 1248,69 1271,03 1292,38	1620,00 1800,00 1980,00 2160,00 2340,00 2520,00 2700,00 2880,00 3060,00 3420,00 3600,00	2065,50 2295,00 2524,50 2754,00 2983,50 3213,00 3442,50 3672,00 3901,50 4131,00 4360,50 4590,00	639,54 621,96 602,13 580,40 557,03 532,24 506,19 479,03 450,88
135 150 165 180 195 210 225 240 255 270 285	50,26 51,72 53,08 54,35 55,55 56,68 57,75 58,77 59,75 60,69 61,58	1085,04 1116,96 1146,63 1174,40 1200,53 1225,24 1248,69 1271,03 1292,38 1312,83	1620,00 1800,00 1980,00 2160,00 2340,00 2520,00 2700,00 2880,00 3060,00 3420,00	2065,50 2295,00 2524,50 2754,00 2983,50 3213,00 3442,50 3672,00 3901,50 4131,00 4360,50	639,54 621,96 602,13 580,40 557,03 532,24 506,19 479,03 450,88 421,83 391,97
135 150 165 180 195 210 225 240 255 270 285 300 315 330	50,26 51,72 53,08 54,35 55,55 56,68 57,75 58,77 59,75 60,69 61,58 62,45 63,28 64,09	1085,04 1116,96 1146,63 1174,40 1200,53 1225,24 1248,69 1271,03 1292,38 1312,83 1332,47	1620,00 1800,00 1980,00 2160,00 2340,00 2520,00 2700,00 2880,00 3060,00 3420,00 3600,00	2065,50 2295,00 2524,50 2754,00 2983,50 3213,00 3442,50 3672,00 3901,50 4131,00 4360,50 4590,00 4819,50 5049,00	639,54 621,96 602,13 580,40 557,03 532,24 506,19 479,03 450,88 421,83 391,97
135 150 165 180 195 210 225 240 255 270 285 300 315	50,26 51,72 53,08 54,35 55,55 56,68 57,75 58,77 59,75 60,69 61,58 62,45 63,28 64,09 64,87	1085,04 1116,96 11146,63 1174,40 1200,53 1225,24 1248,69 1271,03 1292,38 1312,83 1332,47 1351,37 1369,60 1387,20	1620,00 1800,00 1980,00 2160,00 2340,00 2520,00 2700,00 2880,00 3060,00 3420,00 3420,00 3780,00 3960,00 4140,00	2065,50 2295,00 2524,50 2754,00 2983,50 3213,00 3442,50 3672,00 3901,50 4131,00 4360,50 4590,00 4819,50 5049,00 5278,50	639,54 621,96 602,13 580,40 557,03 532,24 506,19 479,03 450,88 421,83 391,97 361,37 330,10 298,20
135 150 165 180 195 210 225 240 255 270 285 300 315 330	50,26 51,72 53,08 54,35 55,55 56,68 57,75 58,77 59,75 60,69 61,58 62,45 63,28 64,09 64,87 65,63	1085,04 1116,96 11146,63 1174,40 1200,53 1225,24 1248,69 1271,03 1292,38 1312,83 1332,47 1351,37 1369,60 1387,20 1404,23	1620,00 1800,00 1980,00 2160,00 2340,00 2520,00 2700,00 2880,00 3060,00 3240,00 3420,00 3600,00 3780,00 4140,00 4320,00	2065,50 2295,00 2524,50 2754,00 2983,50 3213,00 3442,50 3672,00 3901,50 4131,00 4360,50 4590,00 4819,50 5049,00 5278,50 5508,00	639,54 621,96 602,13 580,40 557,03 532,24 506,19 479,03 450,88 421,83 391,97 361,37 330,10 298,20 265,73
135 150 165 180 195 210 225 240 255 270 285 300 315 330 345	50,26 51,72 53,08 54,35 55,55 56,68 57,75 58,77 59,75 60,69 61,58 62,45 63,28 64,09 64,87 65,63 66,36	1085,04 1116,96 11146,63 1174,40 1200,53 1225,24 1248,69 1271,03 1292,38 1312,83 1332,47 1351,37 1369,60 1387,20	1620,00 1800,00 1980,00 2160,00 2340,00 2520,00 2700,00 2880,00 3060,00 3420,00 3600,00 3780,00 3960,00 4140,00 4320,00 4500,00	2065,50 2295,00 2524,50 2754,00 2983,50 3213,00 3442,50 3672,00 3901,50 4131,00 4360,50 4590,00 4819,50 5049,00 5278,50	639,54 621,96 602,13 580,40 557,03 532,24 506,19 479,03 450,88 421,83 391,97 361,37 330,10 298,20 265,73 232,73
135 150 165 180 195 210 225 240 255 270 285 300 315 330 345 360 375 390	50,26 51,72 53,08 54,35 55,55 56,68 57,75 58,77 59,75 60,69 61,58 62,45 63,28 64,09 64,87 65,63 66,36	1085,04 1116,96 11146,63 1174,40 1200,53 1225,24 1248,69 1271,03 1292,38 1312,83 1332,47 1351,37 1369,60 1387,20 1404,23 1420,73 1436,74	1620,00 1800,00 1980,00 2160,00 2340,00 2520,00 2700,00 2880,00 3060,00 3420,00 3420,00 3780,00 4140,00 4320,00 4500,00 4680,00	2065,50 2295,00 2524,50 2754,00 2983,50 3213,00 3442,50 3672,00 3901,50 4131,00 4360,50 4590,00 4819,50 5049,00 5278,50 5508,00 5737,50	639,54 621,96 602,13 580,40 557,03 532,24 506,19 479,03 450,88 421,83 391,97 361,37 330,10 298,20 265,73 232,73 199,24
135 150 165 180 195 210 225 240 255 270 285 300 315 330 345 360 375 390 405	50,26 51,72 53,08 54,35 55,55 56,68 57,75 58,77 59,75 60,69 61,58 62,45 63,28 64,09 64,87 65,63 66,36 67,07	1085,04 1116,96 11146,63 1174,40 1200,53 1225,24 1248,69 1271,03 1292,38 1312,83 1332,47 1351,37 1369,60 1387,20 1404,23 1420,73	1620,00 1800,00 1980,00 2160,00 2340,00 2520,00 2700,00 2880,00 3060,00 3420,00 3420,00 3780,00 4140,00 4320,00 4500,00 4680,00	2065,50 2295,00 2524,50 2754,00 2983,50 3213,00 3442,50 3672,00 3901,50 4131,00 4360,50 4590,00 4819,50 5049,00 5278,50 5508,00 5737,50	639,54 621,96 602,13 580,40 557,03 532,24 506,19 479,03 450,88 421,83 391,97 361,37 330,10 298,20 265,73 232,73 199,24
135 150 165 180 195 210 225 240 255 270 285 300 315 330 345 360 375 390 405 420	50,26 51,72 53,08 54,35 55,55 56,68 57,75 58,77 59,75 60,69 61,58 62,45 63,28 64,09 64,87 65,63 66,36 67,07 67,76	1085,04 1116,96 11146,63 1174,40 1200,53 1225,24 1248,69 1271,03 1292,38 1312,83 1332,47 1351,37 1369,60 1387,20 1404,23 1420,73 1436,74 1452,28 1467,40 1482,12	1620,00 1800,00 1980,00 2160,00 2340,00 2520,00 2700,00 2880,00 3060,00 3420,00 3780,00 3780,00 4140,00 4320,00 4500,00 4680,00 5040,00	2065,50 2295,00 2524,50 2754,00 2983,50 3213,00 3442,50 3672,00 3901,50 4131,00 4360,50 4590,00 4819,50 5049,00 5278,50 5508,00 5737,50 5967,00 6196,50 6426,00	639,54 621,96 602,13 580,40 557,03 532,24 506,19 479,03 450,88 421,83 391,97 361,37 330,10 298,20 265,73 232,73 199,24 165,28 130,90
135 150 165 180 195 210 225 240 255 270 285 300 315 330 345 360 375 390 405	50,26 51,72 53,08 54,35 55,55 56,68 57,75 58,77 59,75 60,69 61,58 62,45 63,28 64,09 64,87 65,63 66,36 67,07 67,76 68,44 69,09	1085,04 1116,96 11146,63 1174,40 1200,53 1225,24 1248,69 1271,03 1292,38 1312,83 1332,47 1351,37 1369,60 1387,20 1404,23 1420,73 1436,74 1452,28 1467,40 1482,12	1620,00 1800,00 1980,00 2160,00 2340,00 2520,00 2700,00 2880,00 3060,00 3240,00 3420,00 3780,00 4140,00 4320,00 4500,00 4680,00 5040,00 5220,00	2065,50 2295,00 2524,50 2754,00 2983,50 3213,00 3442,50 3672,00 3901,50 4131,00 4360,50 4590,00 4819,50 5049,00 5278,50 5508,00 5737,50 5967,00 6196,50 6426,00 6655,50	639,54 621,96 602,13 580,40 557,03 532,24 506,19 479,03 450,88 421,83 391,97 361,37 330,10 298,20 265,73 232,73 199,24 165,28 130,90 96,12 60,95
135 150 165 180 195 210 225 240 255 270 285 300 315 330 345 360 375 390 405 420	50,26 51,72 53,08 54,35 55,55 56,68 57,75 58,77 59,75 60,69 61,58 62,45 63,28 64,09 64,87 65,63 66,36 67,07 67,76	1085,04 1116,96 11146,63 1174,40 1200,53 1225,24 1248,69 1271,03 1292,38 1312,83 1332,47 1351,37 1369,60 1387,20 1404,23 1420,73 1436,74 1452,28 1467,40 1482,12	1620,00 1800,00 1980,00 2160,00 2340,00 2520,00 2700,00 2880,00 3060,00 3420,00 3780,00 3780,00 4140,00 4320,00 4500,00 4680,00 5040,00	2065,50 2295,00 2524,50 2754,00 2983,50 3213,00 3442,50 3672,00 3901,50 4131,00 4360,50 4590,00 4819,50 5049,00 5278,50 5508,00 5737,50 5967,00 6196,50 6426,00	639,54 621,96 602,13 580,40 557,03 532,24 506,19 479,03 450,88 421,83 391,97 361,37

5.5.3 Tempo di ritorno 15 anni

Procinitazioni o	di notevole intensità	o brovo durata	Procinita	ioni orarie di durato	2.1÷24.oro
rrecipitazioni d			riecipiiaz		
	a ₁ =	47,720 0,545		a ₂ =	44,140 0,270
	n ₁ =			n ₂ =	0,2/0
	ı _i –	0,753			
Superfic	ie afferente A (ha)=	2,57			
	Coeff. di afflusso φ=	0,85			
	coli invasi (mc/ha)=	5			
	sato a monte (mc)=	0,00	ner	rm. terreno (m/sec)	1,00E-05
	a sollevata (mc/s)=	0,200		sup drenante (mg)	5.500
	4 30.10 (11.0/3)	0,200		sop aronamo (ma)]
n. pozz	i disperdenti (cad)=	20			
	a per pozzo (l/sec)=	10,00			
	spersa pozzi (I/sec)=	200,00	alte	ezza accumulo (m)	0,14
Portata dispe	ersa bacino (I/sec)=	55,00	volur	me accumulo (mc)	770
Porta	ta dispersa (I/sec)=	255,00			
Volume di	laminazione (mc) =	765,94	volume ut	tile accumulo (mc)	770,00
stante di massimo i	riempimento (min)=	75			
Tempo di sv	vuotamento (min)=	510			
	(ore)	8,50			
	(giorni)	0,35		Г	
talamila mimuli	Altezza di pioggia		Volume di afflusso	Volume deflusso	Volume invasato
Istante minuti	(mm)	per runoff (mc)	sollevato (mc)	(mc)	(mc)
0	0,00	0,00	0,00	0,00	0,00
15	22,42	476,85	180,00	229,50	427,35
30	32,71	701,63	360,00	459,00	602,63
45	40,80	878,32	540,00	688,50	729,82
60	44,14	951,39	720,00	918,00	753,39
75	46,88	1011,27	900,00	1147,50	763,77
90	49,25	1062,94	1080,00	1377,00	765,94
105	51,34	1108,66	1260,00	1606,50	762,16
120	53,22	1149,84	1440,00	1836,00	753,84
135	54,94	1187,41	1620,00	2065,50	741,91
150	56,53	1222,04	1800,00	2295,00	727,04
165	58,00	1254,23	1980,00	2524,50	709,73
180	59,38	1284,35	2160,00	2754,00	690,35
195	60,68	1312,69	2340,00	2983,50	669,19
210	61,91	1339,48	2520,00	3213,00	646,48
225 240	63,07	1364,91	2700,00 2880,00	3442,50	622,41 597,13
255	64,18 65,24	1389,13 1412,26	3060,00	3672,00 3901,50	570,76
270	66,25	1412,26	3240,00	4131,00	543,43
285	67,23	1455,71	3420,00	4360,50	515,21
300	68,16	1476,19	3600,00	4590,00	486,19
315	69,07	1495,94	3780,00	4819,50	456,44
330	69,94	1515,01	3960,00	5049,00	426,01
345	70,79	1533,45	4140,00	5278,50	394,95
360	71,60	1551,32	4320,00	5508,00	363,32
375	72,40	1568,66	4500,00	5737,50	331,16
390	73,17	1585,50	4680,00	5967,00	298,50
405	73,92	1601,87	4860,00	6196,50	265,37
420	74,65	1617,80	5040,00	6426,00	231,80
435	75,36	1633,32	5220,00	6655,50	197,82
450	76,05	1648,46	5400,00	6885,00	163,46
465	76,73	1663,23	5580,00	7114,50	128,73
480	77,39	1677,66	5760,00	7344,00	93,66
495 510	78,03	1691,77	5940,00	7573,50	58,27
	78,66	1705,56	6120,00	7803,00	22,56
525	79,28	1719,06	6300,00	8032,50	-13,44

5.5.4 Tempo di ritorno 20 anni

Precipitazioni d	i notevole intensità	e breve durata	Precipitaz	ioni orarie di durato	a 1÷24 ore
	a ₁ =	50,490		a ₂ =	46,820
	n ₁ =	0,546		n ₂ =	0,268
	T _i =	0,762			
	1	-,			
Superfici	e afferente A (ha)=	2,57			
	Coeff. di afflusso φ=	0,85			
	coli invasi (mc/ha)=	5			
	ato a monte (mc)=	0,00	per	m. terreno (m/sec)	1,00E-05
	a sollevata (mc/s)=	0,200		sup drenante (mg)	5.500
7 5.1.4.1	2 20110 / 212 (1110/0)	3,233		sop aromaino (mg)	5,555
n. pozzi	disperdenti (cad)=	20			
	per pozzo (l/sec)=	10,00			
	persa pozzi (I/sec)=	200,00	alte	ezza accumulo (m)	0,16
	rsa bacino (I/sec)=	55,00		me accumulo (mc)	880
•	a dispersa (I/sec)=	255,00		()	
	aminazione (mc) =	830,34	volume ut	tile accumulo (mc)	880,00
stante di massimo ri		75	¥0,011,0 01	ine decernore (me)	000,00
	uotamento (min)=	555			
.ompo di sv	(ore)	9,25			
	(giorni)	0,39			
	(Biotti)	0,07			
		Volume di afflusso	Volume di afflusso		
Istante minuti	Altezza di pioggia	per runoff	sollevato	Volume deflusso	Volume invasato
	(mm)	(mc)	(mc)	(mc)	(mc)
0	0,00	0,00	0,00	0,00	0,00
15	23,69	504,56	180,00	229,50	455,06
30	34,58	742,58	360,00	459,00	643,58
45	43,15	929,78	540,00	688,50	781,28
60	46,82	1009,93	720,00	918,00	811,93
75	49,71	1072,96	900,00	1147,50	825,46
90	52,19	1127,34	1080,00	1377,00	830,34
105	54,40	1175,43	1260,00	1606,50	828,93
120	56,38	1218,72	1440,00	1836,00	822,72
135	58,19	1258,22	1620,00	2065,50	812,72
150	59,85	1294,62	1800,00	2295,00	799,62
165	61,40	1328,45	1980,00	2524,50	783,95
180	62,85	1360,09	2160,00	2754,00	766,09
195	64,21	1389,86	2340,00	2983,50	746,36
210	65,50	1418,00	2520,00	3213,00	725,00
225	66,72	1444,70	2700,00	3442,50	702,20
240	67,89	1470,13	2880,00	3672,00	678,13
255	69,00	1494,42	3060,00	3901,50	652,92
270	70,06		3240,00	4131,00	626,69
285	71,09	1540,03	3420,00	4360,50	599,53
300	72,07	1561,52	3600,00	4590,00	571,52
315	73,02	1582,24	3780,00	4819,50	542,74
330	73,93		3960,00	5049,00	513,25
345	74,82	1621,61	4140,00	5278,50	483,11
360	75,68		4320,00	5508,00	452,36
375	76,51	1658,55	4500,00	5737,50	421,05
390	77,32	1676,21	4680,00	5967,00	389,21
405	78,11	1693,38	4860,00	6196,50	356,88
420	78,87	1710,09	5040,00	6426,00	324,09
435	79,62	1726,37	5220,00	6655,50	290,87
	80,34	1742,24	5400,00	6885,00	257,24
450			5580,00	7114,50	223,23
465	81,05	1757,73			
465 480	81,74	1772,86	5760,00	7344,00	
465 480 495	81,74 82,42	1772,86 1787,65	5760,00 5940,00	7573,50	154,15
465 480	81,74 82,42 83,08	1772,86 1787,65 1802,11	5760,00 5940,00 6120,00	7573,50 7803,00	154,15 119,11
465 480 495 510 525	81,74 82,42	1772,86 1787,65 1802,11 1816,27	5760,00 5940,00	7573,50 7803,00 8032,50	154,15 119,11
465 480 495 510	81,74 82,42 83,08	1772,86 1787,65 1802,11	5760,00 5940,00 6120,00	7573,50 7803,00	154,15 119,11 83,77 48,13
465 480 495 510 525	81,74 82,42 83,08 83,73	1772,86 1787,65 1802,11 1816,27	5760,00 5940,00 6120,00 6300,00	7573,50 7803,00 8032,50	188,86 154,15 119,11 83,77 48,13 12,21 -23,97

5.5.5 Tempo di ritorno 25 anni

	ioni orarie di durata	Precipitaz		i notevole intensità	Precipitazioni d
48,880	a ₂ =		52,620	a ₁ =	
0,267	n ₂ =		0,546	n ₁ =	
			0,768	T _i =	
			2,57	e afferente A (ha)=	Superfici
			0,85	Coeff. di afflusso φ=	
			5	coli invasi (mc/ha)=	volume picc
1,00E-05	m. terreno (m/sec)	per	0,00	ato a monte (mc)=	volume invas
5.500	sup drenante (mq)		0,200	a sollevata (mc/s)=	Portato
			20	disperdenti (cad)=	
			10,00	per pozzo (I/sec)=	
0,16	ezza accumulo (m)		200,00	Portata dispersa pozzi (I/sec)=	
880	ne accumulo (mc)	volun	55,00	Portata dispersa bacino (I/sec)=	
202.00	1		255,00	a dispersa (I/sec)=	
880,00	ile accumulo (mc)	volume ui	880,52 90	aminazione (mc) =	stante di massimo r
			585	ruotamento (min)=	
			9,75	(ore)	rempo arsv
			0,41	(giorni)	
			0,41	(Biotili)	
87970 - 1 P	Name - 1	Volume di afflusso	Volume di afflusso		
Volume invasato	Volume deflusso	sollevato	per runoff	Altezza di pioggia	Istante minuti
(mc)	(mc)	(mc)	(mc)	(mm)	
0,00	0,00	0,00	0,00	0,00	0
476,89	229,50	180,00	526,39	24,68	15
675,45	459,00	360,00	774,45	36,04	30
821,05	688,50	540,00	969,55	44,97	45
856,93	918,00	720,00	1054,93	48,88	60
872,98	1147,50	900,00	1120,48	51,88	75
880,02	1377,00	1080,00	1177,02	54,47	90
880,52	1606,50	1260,00	1227,02	56,76	105
876,02	1836,00	1440,00	1272,02	58,82	120
867,57	2065,50	1620,00	1313,07	60,70	135
855,90	2295,00 2524,50	1800,00 1980,00	1350,90 1386,04	62,43 64,04	150 165
841,54 824,92	2754,00	2160,00	1418,92	65,54	180
806,35	2983,50	2340,00	1449,85	66,96	195
786,08	3213,00	2520,00	1479,08	68,30	210
764,32	3442,50	2700,00	1506,82	69,57	225
741,23	3672,00	2880,00	1533,23	70,78	240
716,96	3901,50	3060,00	1558,46	71,93	255
691,63	4131,00	3240,00	1582,63	73,04	270
665,33	4360,50	3420,00	1605,83	74,10	285
638,15	4590,00	3600,00	1628,15	75,12	300
610,17	3780,00 4819,50		1649,67	76,11	315
581,44	3960,00 5049,00		1670,44	30 77,06	
552,04	4140,00 5278,50		1690,54	77,98	345
522,01			1710,01	78,87	360
491,39			1728,89	79,73	375
460,22			1747,22	80,57	390
428,55			1765,05	81,39	405
396,40			1782,40	82,18	420 435
363,80 330,77			1799,30	82,95 83.71	
297,35	6885,00 7114,50	5580,00	1815,77 1831,85	83,71 84,45	450 465
263,56	7344,00	5760,00	1847,56	85,16	480
229,41	7573,50	5940,00	1862,91	85,87	495
194,92	7803,00	6120,00	1877,92	86,55	510
160,11	8032,50	6300,00	1892,61	87,23	525
124,99	8262,00	6480,00	1906,99	87,88	540
89,59	8491,50	6660,00	1921,09	88,53	555
53,91	8721,00	6840,00	1934,91	89,16	570
	8950,50	7020,00	1948,47	89,78	585
17,97		***		90,39	D7000000

5.5.6 Tempo di ritorno 50 anni

Precipitazioni d	li notevole intensità	e breve durata	Precipitaz	ioni orarie di durato	a 1÷24 ore
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	a ₁ =	59,180	77000000	a ₂ =	55,250
	n ₁ =	0,548		n ₂ =	0,264
	T _i =	0,785			
Superfici	e afferente A (ha)=	2,57			
	Coeff. di afflusso φ=	0,85			
	coli invasi (mc/ha)=	5			1.005.05
	ato a monte (mc)= a sollevata (mc/s)=	0,00 0,200		m. terreno (m/sec) sup drenante (ma)	1,00E-05 5.500
Foliate	u solievala (ITIC/s)-	0,200		sop arename (ma)	3.300
n. pozzi	disperdenti (cad)=	20			
	per pozzo (l/sec)=	10,00			
Portata dis	persa pozzi (I/sec)=	200,00	alte	ezza accumulo (m)	0,19
	Portata dispersa bacino (I/sec)=		volur	ne accumulo (mc)	1.045
	ta dispersa (I/sec)=	255,00		"	104500
	laminazione (mc) = iempimento (min)=	1.040,44	volume ut	ile accumulo (mc)	1.045,00
	vuotamento (min)=	690			
iompo di sv	(ore)	11,50			
	(giorni)	0,48			
	Altezza di pioggia		Volume di afflusso	Volume deflusso	Volume invasato
Istante minuti	(mm)	per runoff	sollevato	(mc)	(mc)
0	0,00	(mc) 0,00	(mc)	0,00	0,00
15	27,69	591,93	180,00	229,50	542,43
30	40,48	871,37	360,00	459,00	772,37
45	50,55	1091,38	540,00	688,50	942,88
60	55,25	1194,09	720,00	918,00	996,09
75	58,60	1267,32	900,00	1147,50	1019,82
90 105	61,49 64,05	1330,45 1386,24	1080,00 1260,00	1377,00 1606,50	1033,45 1039,74
120	66,34	1436,44	1440,00	1836,00	1040,44
135	68,44	1482,22	1620,00	2065,50	1036,72
150	70,37	1524,39	1800,00	2295,00	1029,39
165	72,16	1563,56	1980,00	2524,50	1019,06
180	73,84	1600,19	2160,00	2754,00	1006,19
195 210	75,42	1634,64	2340,00	2983,50	991,14
225	76,91 78,32	1667,18 1698,07	2520,00 2700,00	3213,00 3442.50	974,18 955,57
240	79,67	1727,47	2880,00	3672,00	935,47
255	80,95	1755,54		3901,50	914,04
270	82,18	1782,43	3240,00	4131,00	891,43
285	83,36	1808,24	3420,00	4360,50	867,74
300	84,50	1833,07	3600,00	4590,00	843,07
315	85,60 86,65	1857,00	3780,00	4819,50	817,50
330 345	86,65 87,68	1880,10 1902,45		5049,00 5278,50	791,10 763,95
360	88,67	1902,43		5508,00	736,09
375	89,63	1945,08		5737,50	707,58
390	90,56	1965,46	4680,00	5967,00	678,46
405	91,47	1985,27	4860,00	6196,50	648,77
420	92,35	2004,54		6426,00	618,54
435 450	93,21 94,05	2023,32 2041,62	-	6655,50 6885,00	587,82 556,62
465	94,05	2041,82		7114,50	524,99
480	95,66	2076,93		7344,00	492,93
495	96,44	2093,97	5940,00	7573,50	460,47
510	97,21	2110,64		7803,00	427,64
525	97,95	2126,96		8032,50	394,46
540	98,69	2142,93		8262,00	360,93
555 570	99,40 100,10	2158,58 2173,92		8491,50 8721,00	327,08 292,92
585	100,79	2188,97	7020,00	8950,50	258,47
600	100,77	2203,73		9180,00	223,73
615	102,13	2218,23	7380,00	9409,50	188,73
630	102,78	2232,47	7560,00	9639,00	153,47
645	103,42	2246,46		9868,50	117,96
660	104,05	2260,22	7920,00	10098,00	82,22
675	104,67	2273,74		10327,50	46,24
690	105,28	2287,05	8280,00	10557,00	10,05

5.5.7 Tempo di ritorno 200 anni

Dra ainiterriani d	i notovolo intonsità	a brava di mata	Draginitar	iani arasia di dusata	1104 000
riecipitazioni a	i notevole intensità a ₁ =	72,180	rrecipitaz	ioni orarie di durato a ₂ =	67,860
	n ₁ =	0,551		n ₂ =	0,260
	T _i =	0,809		2	0,200
		.,			
Superfici	e afferente A (ha)=	2,57			
(Coeff. di afflusso φ=	0,85			
volume pico	coli invasi (mc/ha)=	5			
volume invas	ato a monte (mc)=	0,00	per	m. terreno (m/sec)	1,00E-05
Portate	a sollevata (mc/s)=	0,200		sup drenante (mq)	5.500
	disperdenti (cad)=	20			
	per pozzo (l/sec)=	10,00 200,00			
	Portata dispersa pozzi (I/sec)= Portata dispersa bacino (I/sec)=			ezza accumulo (m)	0,25
		55,00	Volun	ne accumulo (mc)	1.375
	a dispersa (I/sec)= aminazione (mc) =	255,00 1.373,33	v olumo o ut	ile accumulo (mc)	1 275 00
stante di massimo r		1.373,33	volume of	ile accornoio (mc)	1.375,00
	ruotamento (min)=	900			
iompo di sv	(ore)	15,00			
	(giorni)	0,63			
	,0,	,,,,			
	Allagraciality in the second	Volume di afflusso	Volume di afflusso	Values deflere	Values in
Istante minuti	Altezza di pioggia (mm)	per runoff	sollevato	Volume deflusso (mc)	Volume invasato (mc)
	(A) (A)	(mc)	(mc)		
0	0,00	0,00	0,00	0,00	0,00
15 30	33,63 49,27	721,72 1063,37	180,00 360,00	229,50 459,00	672,22
30 45	49,27	1063,37	360,00 540,00	459,00	964,37 1184,29
60	67,86	1469,55	720,00	918,00	1271,55
75	71,91	1558,10	900,00	1147,50	1310,60
90	75,40	1634,36	1080,00	1377,00	1337,36
105	78,49	1701,72	1260,00	1606,50	1355,22
120	81,26	1762,29	1440,00	1836,00	1366,29
135	83,79	1817,50	1620,00	2065,50	1372,00
150	86,11	1868,33	1800,00	2295,00	1373,33
165	88,28	1915,53	1980,00	2524,50	1371,03
180	90,30	1959,65	2160,00	2754,00	1365,65
195	92,19	2001,13	2340,00	2983,50	1357,63
210	93,99	2040,31	2520,00	3213,00	1347,31
225	95,69	2077,48	2700,00	3442,50	1334,98
240 255	97,31 98,85	2112,85 2146,62	2880,00 3060,00	3672,00 3901,50	1320,85 1305,12
270	100,33	2178,95	3240,00	4131,00	1287,95
285	100,33	2209,98	3420,00	4360,50	1267,73
300	103,12	2239,82	3600,00	4590,00	1249,82
315	104,44	2268,58	3780,00 4819,50		1229,08
330	105,71	2296,34		5049,00	1207,34
345	106,94	2323,19	4140,00	5278,50	1184,69
360	108,13	2349,18		5508,00	1161,18
375	109,28	2374,38			1136,88
390	110,40	2398,85			1111,85
405	111,49	2422,63			1086,13
420 435	112,55	2445,77 2468,30			1059,77
435 450	113,58 114,59	2468,30 2490,27			1032,80 1005,27
465	114,59	2511,70			977,20
480	116,52	2532,63			948,63
495	117,46	2553,07	5940,00	7573,50	919,57
510	118,38	2573,07	6120,00	7803,00	890,07
525		2592,63	6300,00	8032,50	860,13
	119,27			8262,00	829,79
540	119,27	2611,79	6480,00	0202,00	
555	120,15 121,01		6480,00 6660,00	8491,50	
555 570	120,15 121,01 121,85	2611,79 2630,55 2648,94	6660,00 6840,00	8491,50 8721,00	767,94
555 570 585	120,15 121,01 121,85 122,67	2611,79 2630,55 2648,94 2666,98	6660,00 6840,00 7020,00	8491,50 8721,00 8950,50	767,94 736,48
555 570 585 600	120,15 121,01 121,85 122,67 123,48	2611,79 2630,55 2648,94 2666,98 2684,68	6660,00 6840,00 7020,00 7200,00	8491,50 8721,00 8950,50 9180,00	767,94 736,48 704,68
555 570 585 600 615	120,15 121,01 121,85 122,67 123,48 124,28	2611,79 2630,55 2648,94 2666,98 2684,68 2702,05	6660,00 6840,00 7020,00 7200,00 7380,00	8491,50 8721,00 8950,50 9180,00 9409,50	767,94 736,48 704,68 672,55
555 570 585 600 615 630	120,15 121,01 121,85 122,67 123,48 124,28 125,06	2611,79 2630,55 2648,94 2666,98 2684,68 2702,05 2719,11	6660,00 6840,00 7020,00 7200,00 7380,00 7560,00	8491,50 8721,00 8950,50 9180,00 9409,50 9639,00	767,94 736,48 704,68 672,55 640,11
555 570 585 600 615 630 645	120,15 121,01 121,85 122,67 123,48 124,28 125,06 125,83	2611,79 2630,55 2648,94 2666,98 2684,68 2702,05 2719,11 2735,88	6660,00 6840,00 7020,00 7200,00 7380,00 7560,00 7740,00	8491,50 8721,00 8950,50 9180,00 9409,50 9639,00 9868,50	767,94 736,48 704,68 672,55 640,11
555 570 585 600 615 630 645	120,15 121,01 121,85 122,67 123,48 124,28 125,06 125,83 126,58	2611,79 2630,55 2648,94 2666,98 2684,68 2702,05 2719,11 2735,88 2752,36	6660,00 6840,00 7020,00 7200,00 7380,00 7560,00 7740,00 7920,00	8491,50 8721,00 8950,50 9180,00 9409,50 9639,00 9868,50 10098,00	799,05 767,94 736,48 704,68 672,55 640,11 607,38 574,36
555 570 585 600 615 630 645	120,15 121,01 121,85 122,67 123,48 124,28 125,06 125,83	2611,79 2630,55 2648,94 2666,98 2684,68 2702,05 2719,11 2735,88	6660,00 6840,00 7020,00 7200,00 7380,00 7560,00 7740,00	8491,50 8721,00 8950,50 9180,00 9409,50 9639,00 9868,50	767,94 736,48 704,68 672,55 640,11

0,0	. 20,00	2, 0,,00	0200,00		00,,00
705	128,77	2800,19	8460,00	10786,50	473,69
720	129,48	2815,63	8640,00	11016,00	439,63
735	130,18	2830,83	8820,00	11245,50	405,33
750	130,86	2845,81	9000,00	11475,00	370,81
765	131,54	2860,57	9180,00	11704,50	336,07
780	132,20	2875,11	9360,00	11934,00	301,11
795	132,86	2889,45	9540,00	12163,50	265,95
810	133,51	2903,59	9720,00	12393,00	230,59
825	134,14	2917,53	9900,00	12622,50	195,03
840	134,77	2931,29	10080,00	12852,00	159,29
855	135,40	2944,87	10260,00	13081,50	123,37
870	136,01	2958,28	10440,00	13311,00	87,28
885	136,62	2971,51	10620,00	13540,50	51,01
900	137,21	2984,58	10800,00	13770,00	14,58
915	137,80	2997,49	10980,00	13999,50	-22,01

5.6 TABULATI DI PROGETTO RETE DI DRENAGGIO: CAPPING PROVVISORIO

N. progressivo tronco	1	2
Codice tronco	Lotto I e II	Scarpata III lotto
Tronchi confluenti n.		
Area bacino proprio (ha)	2,57	0,313
Area bacino tributario (ha)	0	0
Area bacino totale (ha)	2,57	0,313
Coeff. di afflusso proprio	0,85	0,85
Coeff. di afflusso totale	0,85	0,85
Lunghezza (m.)	190	75
Pendenza (%)	0,5	0,5
Franco di calcolo (%)	25	25
Gamma (Bazin)	0,23	0,23
Diametro teorico (mm)	752	367
Tipo di sezione di progetto	Rettangolare	Rettangolare
Larghezza sezione di progetto (mm)	780	500
Portata di progetto (mc/sec)	0,694	0,101
Altezza di riempimento (mm)	469	175
Sezione liquida (mq)	0,3661	0,2237
Velocità (m/sec)	1,89	1,15
Tempo di riempimento (hh/mm/ss)	0/ 2/45	0/ 1/52
Curva di calcolo	1	1
a'	36,77	36,77
n'	0,539	0,539
epsilon	1,33158	1,33158
Volume invasato a monte (mc)	0	0
Volume invasato nel tronco (mc)	69,562	34,898

Tabulato di calcolo dei canali di raccolta delle acque relativi al capping provviorio

5.7 TABULATI DI VERIFICA RETE DI DRENAGGIO: CAPPING DEFINITIVO

N. progressivo tronco	1	2	3	4	5
Codice tronco	Lotto I e II	Scarpata III lotto	Scarpata I e II_1	Scarpata I e II_2	Scarpata I e II_3
Tronchi confluenti n.					
Area bacino proprio (ha)	2,57	0,313	1,4412	0,1782	0,7747
Area bacino tributario (ha)	0	0	0	0	0
Area bacino totale (ha)	2,57	0,313	1,441	0,178	0,775
Coeff. di afflusso proprio	0,6	0,6	0,6	0,6	0,65
Coeff. di afflusso totale	0,6	0,6	0,6	0,6	0,65
Lunghezza (m.)	190	75	320	60	135
Pendenza (%)	0,5	0,5	0,5	0,5	0,5
Franco di calcolo (%)	25	25	25	25	25
Gamma (Bazin)	0,23	0,5	0,23	0,23	0,23
Diametro teorico (mm)	591	317	435	232	396
Tipo di sezione di progetto	Rettangolare	Rettangolare	Rettangolare	Rettangolare	Rettangolare
Larghezza sezione di progetto (mm)	780	500	500	500	500
Portata di progetto (mc/sec)	0,366	0,045	0,161	0,029	0,125
Altezza di riempimento (mm)	292	134	246	75	204
Sezione liquida (mq)	0,2275	0,0672	0,1229	0,0377	0,102
Velocità (m/sec)	1,61	0,68	1,31	0,76	1,22
Tempo di riempimento (hh/mm/ss)	0/ 5/11	0/ 4/58	0/ 8/46	0/ 4/ 0	0/ 4/43
Curva di calcolo	1	1	1	1	1
a'	36,77	36,77	36,77	36,77	36,77
n'	0,539	0,539	0,539	0,539	0,539
epsilon	1,33158	1,33158	1,33158	1,33158	1,33158
Volume invasato a monte (mc)	0	0	0	0	0
Volume invasato nel tronco (mc)	43,234	5,042	39,315	2,263	13,772

Tabulato di verifica dei canali di raccolta delle acque relativi al capping definitivo

In fase di capping definitivo si è utilizzato un coeff. di afflusso pari a 0,6 a fronte del completo rivestimento con terreno vegetale.